We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Determine a constant k such that the polynomial P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) is divisible by x+y+z

Thanks for the help!

Guest Aug 23, 2018

edited by
Guest
Aug 23, 2018

#1**+2 **

If you assume such a constant exists, then you can solve for it by setting up an equation based on P(x, y, z) = 0 whenever x + y + z = 0. For example, P(2, -1, -1) = 0.

Olpers Aug 23, 2018

#4**+3 **

**Determine a constant k such that the polynomial **

**\(\displaystyle P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2)\)**

**is divisible by x+y+z**

\(\begin{array}{|clcll|} \hline \\ P(x, y, z)\text{ is divisible by } x+y+z \\ \\ \hline \\ P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) = (x+y+z) \cdot f(x,y,z) \\ \text{Set } x+y+z = 0 \\ \text{so:} \\ P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) = 0 \cdot f(x,y,z) \\ x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) = 0 \\ \\ \text{Set arbitrary } x+y+z = 2-1-1= 0 \qquad \text{so } x=2, \quad y=-1, \text{ and } z=-1 \\\\ P(2, -1, -1) = 2^5 + (-1)^5 + (-1)^5 + k\left(2^3+(-1)^3+(-1)^3\right)\left(2^2+(-1)^2+(-1)^2\right) = 0 \\ 32-1-1 + k(8-1-1)(4+1+1) = 0 \\ 30 + k\cdot 6 \cdot 6 = 0 \\ 30 +36k = 0 \\ 36k = -30 \\ k = -\dfrac{30}{36} \\ \mathbf{ k = -\dfrac{5}{6} } \\ \hline \end{array}\)

**Example:**

\(\begin{array}{|rcll|} \hline x&=& 1 \\ y&=& 2 \\ z &=& 3 \\ x+y+z &=& 6 \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline P(1, 2, 3) &=& 1^5 + 2^5 + 3^5 - \dfrac{5}{6}\left(1^3+2^3+3^3\right)\left(1^2+2^2+3^2\right) \\ &=& 1 + 32+ 243 - \dfrac{5}{6}\cdot(1 +8+27)(1+4+9) \\ &=& 276 - \dfrac{5}{6}\cdot 36\cdot 14 \\ &=& 276 - 5\cdot 6\cdot 14 \\ &=& 276 - 420 \\ &=& -144 \\ &=& -24\cdot 6 \quad \text{This is divisible by } x+y+z = 6 \\ \hline \end{array}\)

heureka Aug 23, 2018