We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
532
5
avatar

Determine a constant k such that the polynomial P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) is divisible by x+y+z

 

Thanks for the help!

 Aug 23, 2018
edited by Guest  Aug 23, 2018
 #1
avatar+96 
+2

If you assume such a constant exists, then you can solve for it by setting up an equation based on P(x, y, z) = 0 whenever x + y + z = 0. For example, P(2, -1, -1) = 0.

 Aug 23, 2018
 #2
avatar
+1

Could u go a bit further. I’m a little confused. Or can u solve it.

Thanks!

Guest Aug 23, 2018
edited by Guest  Aug 23, 2018
 #3
avatar
0

yes can you please solve it?

 

Thanks, i too am still confused.

Guest Aug 23, 2018
edited by Guest  Aug 23, 2018
 #4
avatar+22290 
+3

Determine a constant k such that the polynomial

\(\displaystyle P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2)\)

is divisible by x+y+z

 

\(\begin{array}{|clcll|} \hline \\ P(x, y, z)\text{ is divisible by } x+y+z \\ \\ \hline \\ P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) = (x+y+z) \cdot f(x,y,z) \\ \text{Set } x+y+z = 0 \\ \text{so:} \\ P(x, y, z) = x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) = 0 \cdot f(x,y,z) \\ x^5 + y^5 + z^5 + k(x^3+y^3+z^3)(x^2+y^2+z^2) = 0 \\ \\ \text{Set arbitrary } x+y+z = 2-1-1= 0 \qquad \text{so } x=2, \quad y=-1, \text{ and } z=-1 \\\\ P(2, -1, -1) = 2^5 + (-1)^5 + (-1)^5 + k\left(2^3+(-1)^3+(-1)^3\right)\left(2^2+(-1)^2+(-1)^2\right) = 0 \\ 32-1-1 + k(8-1-1)(4+1+1) = 0 \\ 30 + k\cdot 6 \cdot 6 = 0 \\ 30 +36k = 0 \\ 36k = -30 \\ k = -\dfrac{30}{36} \\ \mathbf{ k = -\dfrac{5}{6} } \\ \hline \end{array}\)

 

Example:

\(\begin{array}{|rcll|} \hline x&=& 1 \\ y&=& 2 \\ z &=& 3 \\ x+y+z &=& 6 \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline P(1, 2, 3) &=& 1^5 + 2^5 + 3^5 - \dfrac{5}{6}\left(1^3+2^3+3^3\right)\left(1^2+2^2+3^2\right) \\ &=& 1 + 32+ 243 - \dfrac{5}{6}\cdot(1 +8+27)(1+4+9) \\ &=& 276 - \dfrac{5}{6}\cdot 36\cdot 14 \\ &=& 276 - 5\cdot 6\cdot 14 \\ &=& 276 - 420 \\ &=& -144 \\ &=& -24\cdot 6 \quad \text{This is divisible by } x+y+z = 6 \\ \hline \end{array}\)

 

laugh

 Aug 23, 2018
 #5
avatar
+3

THANK YOU SOOOO MUCH!!!!!!!

Guest Aug 23, 2018

14 Online Users

avatar
avatar