+0  
 
+1
721
4
avatar+171 

Suppose \(f(x),g(x),h(x)\) are all linear functions, and \(j(x)\) and \(k(x)\) are defined by

 

\(j(x) = \max\{f(x),g(x),h(x)\},\)

 

\(k(x) = \min\{f(x),g(x),h(x)\}.\)

 

This means that, for each \(x\), we define \(j(x)\) to be equal to either \(f(x), g(x)\)  or \(h(x)\) whichever is greatest; similarly, \(k(x)\) is the least of these three values.

Shown below is the graph of \(y=j(x)\) for \(-3.5\le x\le 3.5\).

Let \(\ell\) be the length of the graph of \(y=k(x)\) for \(-3.5\le x\le 3.5\). What is the value of \(\ell^2\)?

 

It is not 49.

Please help!
 

Graph: 

 Jul 8, 2020
edited by BillyBobJoeJr  Jul 8, 2020
 #1
avatar+33661 
+3

Where is the graph?

 Jul 8, 2020
 #2
avatar+171 
+1

oops sorry

BillyBobJoeJr  Jul 8, 2020
 #3
avatar+118667 
+2

\(\overline{FG}=\sqrt{3.5^2+7^2}\\ \overline{FGE}=2\sqrt{3.5^2+7^2}\\ [\overline{FGE}]^2=4(3.5^2+7^2)\\ [\overline{FGE}]^2=245\\ l^2=245 \)

 

 

 

.
 Jul 9, 2020
 #4
avatar+171 
+2

It was correct, thank you so much

BillyBobJoeJr  Jul 10, 2020

2 Online Users