+0  
 
0
46
2
avatar

Find all values of x that satisfy the equation\( \frac {12x}{x^2 + 8} = 2. \)\(Let $s$ and $t$ be the solutions of the quadratic $4x^2 + 9x - 6 = 0.$ Find $$\frac st + \frac ts.$$\)
\(Let $a$ and $b$ be the solutions of the quadratic equation $2x^2 - 8x + 7 = 0$. Find \[\frac{1}{2a} + \frac{1}{2b}.\]\)

Guest Feb 14, 2018
Sort: 

2+0 Answers

 #1
avatar+11457 
+1

Multiply both sides by x^2 +8    to get

 

12x = 2x^2 + 16     re-arrange

0 = 2x^2 -12x + 16   Divide both sides by two

0=x^2 - 6x + 8        Factor

(x-4)(x-2) = 0

 

For this to be true  either   x-4 = 0    or   x-2 = 0     so x=   4  or 2

ElectricPavlov  Feb 15, 2018
 #2
avatar+82944 
+1

4x^2 + 9x -  6  =  0

 

s/t  + t/s  =      [ s^2 + t^2 ]  [  st ]

 

Using the quadratic function to solve

 

x  =   ( -9 ± √ [ (9^2  - 4* 4 *  - 6) ]  ) /  8

x   =  ( -9 ± √ [ 177]  )/ 8

 

Call  s  =     ( -9 + √ [ 177]  )/ 8        Call t  =   ( -9 - √ [ 177]  )/ 8

 

s^2  = [ 81 - 18√ 177 + 177] / 64      =   [258  - 18√177 ] / 64

 

t^2  =  [  81  + 18√177 + 177 ] / 64  =  [ 258+ 18√177] / 64

 

s^2 +  t^2   =     516 / 64  =   129/16

 

And  st  will   = c / a  =   -6/4  =  -3/2

 

So

 

[ s^2 + t^2 ]  /  st   =   129/16  *  -2 / 3   =   - 43 / 8

 

 

cool cool cool

CPhill  Feb 15, 2018

13 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details