Find all values of such that . If you find more than one value, then list your solutions, separated by commas.
Here is the question: Find all values of x such that x^2 - 8x + 15 = 2x^2 - 12x + 11. If you find more than one value, then list your solutions, separated by commas.
x^2 - 8x + 15 = 2x^2 - 12x + 11.
\(x^2 - 8x + 15 = 2x^2 - 12x + 11 \mbox{ }| -2x^2 - 12x + 11 \\ -x^2 + 4x + 4 = 0 \mbox{ }| \cdot (-1) \\ x^2 - 4x - 4 = 0 \mbox{ }| + 4 \\ x^2 - 4x = 4 \mbox{ }| + 4 \\ x^2 - 4x + 4 = 8 \\ (x - 2)^2 = 8 \mbox { }| \sqrt{(...)} \\ x - 2 = \pm \mbox{ } 2 \sqrt{2} \mbox{ }| + 2 \\ \boxed{x_1 = 2 + 2\sqrt{2} \\ x_2 = 2 - 2\sqrt{2}}\)