+0  
 
0
559
3
avatar

Hello, could you advise me how to solve this please? ==> u'(t)+u(t)=k

Guest Jan 1, 2015

Best Answer 

 #2
avatar+92429 
+10

u'(t)+u(t)=k   ...this is a linear differential equation which is in the form  du/dt + p(t) u = g(t)......note that p(t)  = 1 

We need to multiply through by an integrating factor which is given by e∫p(t)dt  = e∫(1)dt = et

So we have

et u'(t) + et u(t)= ket

And because of our employment of the integrating factor, we can write the left side in the form of the product rule, thusly....

[ et u(t) ] '  = ket    ....integrate both sides

∫[ et u(t) ] ' dt  = ∫ ket dt

et u(t)  = ket + C    divide both sides by et

u(t) = k + Ce-t

---------------------------------------------------------------------------------------------------------------

Note that this solution "works" because

u'(t) = -Ce-t   and u(t)  = k + Ce-t

And their sum = k

---------------------------------------------------------------------------------------------------------------

 

CPhill  Jan 1, 2015
 #1
avatar+17746 
+10

u'(t) + u(t) =  k

--->   u'(t)  =  k - u(t)

--->   ∫u'(t)dt  =  ∫[k - u(t)]dt

--->   u(t) + C1  =  ∫kdt - ∫u(t)dt

--->   u(t) + C1  =  kt + C2 - ∫u(t)dt

--->   u(t)  =  kt - ∫u(t)dt + C

geno3141  Jan 1, 2015
 #2
avatar+92429 
+10
Best Answer

u'(t)+u(t)=k   ...this is a linear differential equation which is in the form  du/dt + p(t) u = g(t)......note that p(t)  = 1 

We need to multiply through by an integrating factor which is given by e∫p(t)dt  = e∫(1)dt = et

So we have

et u'(t) + et u(t)= ket

And because of our employment of the integrating factor, we can write the left side in the form of the product rule, thusly....

[ et u(t) ] '  = ket    ....integrate both sides

∫[ et u(t) ] ' dt  = ∫ ket dt

et u(t)  = ket + C    divide both sides by et

u(t) = k + Ce-t

---------------------------------------------------------------------------------------------------------------

Note that this solution "works" because

u'(t) = -Ce-t   and u(t)  = k + Ce-t

And their sum = k

---------------------------------------------------------------------------------------------------------------

 

CPhill  Jan 1, 2015
 #3
avatar+94090 
+5

Great answers from both of you :)

I love your new icon Chris     

Melody  Jan 2, 2015

1 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.