+0

# hello, help!

0
336
2
+4221

What is the area of the region bounded by the three lines with equations \(2x+y = 8\)\(2x-5y = 20\) and \(x+y = 10\)?

Dec 29, 2017

#1
+100521
+2

Look  at the graph, here :

https://www.desmos.com/calculator/sdppfsq0xq

The three intersection points  occur at  (5,-2), (10, 0)  and (-2, 12)

And these form a triangle......

Let us  consider  the base to be the segment joining  (10,0)  and (-2,12)

And the length  of this base  =  sqrt [ (-2 -10)^2  + 12^2]  =   sqrt (288)  =  12sqrt(2)

And the altitude of this triangle can be drawn from (5, -2)  perpendicular to the line x + y  - 10 = 0

And this distance can be calculated as follows :

Altitude  =    abs   [  ax + by  -  10 ]  /  sqrt ( a^2  + b^2 )

Where (a, b)  = (1, 1)    and  (x, y)  = (5, -2)

So we have

Altitude  =  abs  [ 5  +  (-2)   -  10] / sqrt [  1^2 + 1^2 ]  =

abs  [ -7]  /  sqrt [ 2]   =      7 / sqrt (2)

So.....this area  =  (1/2)base * height  =

(1/2)(12*sqrt(2) ) *  7 / sqrt (2)   =   42 units^2

Dec 29, 2017
#2
+4221
+1

Oh, I get it now! Thanks again, CPhill!

Dec 29, 2017