We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# hello, help!

0
391
2

What is the area of the region bounded by the three lines with equations \(2x+y = 8\)\(2x-5y = 20\) and \(x+y = 10\)?

Dec 29, 2017

### 2+0 Answers

#1
+2

Look  at the graph, here :

https://www.desmos.com/calculator/sdppfsq0xq

The three intersection points  occur at  (5,-2), (10, 0)  and (-2, 12)

And these form a triangle......

Let us  consider  the base to be the segment joining  (10,0)  and (-2,12)

And the length  of this base  =  sqrt [ (-2 -10)^2  + 12^2]  =   sqrt (288)  =  12sqrt(2)

And the altitude of this triangle can be drawn from (5, -2)  perpendicular to the line x + y  - 10 = 0

And this distance can be calculated as follows :

Altitude  =    abs   [  ax + by  -  10 ]  /  sqrt ( a^2  + b^2 )

Where (a, b)  = (1, 1)    and  (x, y)  = (5, -2)

So we have

Altitude  =  abs  [ 5  +  (-2)   -  10] / sqrt [  1^2 + 1^2 ]  =

abs  [ -7]  /  sqrt [ 2]   =      7 / sqrt (2)

So.....this area  =  (1/2)base * height  =

(1/2)(12*sqrt(2) ) *  7 / sqrt (2)   =   42 units^2   Dec 29, 2017
#2
+1

Oh, I get it now! Thanks again, CPhill!  Dec 29, 2017