+0

# hello i need help please

0
278
5

x²+y²=25

x+7y=25

x=?

y=?

Guest Dec 2, 2014

### Best Answer

#3
+19054
+8

x²+y²=25 x+7y=25   x=? y=?

$$\\\boxed{x^2+y^2=25} \small{\text{ is a circle }}\\ \boxed{x+7y=25} \small{\text{ is a line}}\\$$

$$\small{\text{The line cut the circle in 2 Points.}} \\ \small{\text{Point 1 is ( x=4, y=3) }}\\ \small{\text{Point 2 is ( x=-3, y=4) }}\\$$

heureka  Dec 2, 2014
Sort:

### 5+0 Answers

#1
+26544
+5

The first equation can be written as x2 + y2 = 52

There is a well-known Pythagorean triple: 32 + 42 = 52

so it is possible that x and y are 3 and 4.

If x = 3 and y = 4 then the second equation, x + 7y = 25 is not true.  However, if x = 4 and y = 3 then it is true that x + 7y = 25.  Therefore

x = 4

y = 3

.

If you didn't spot the Pythagorean triple, then, more generally, you would write the 2nd equation as x = 25 - 7y, substitute this into the first equation and solve the resulting quadratic equation in y.

.

Alan  Dec 2, 2014
#2
+5

yes but thats what i wrote and i dont know how to solve it

x=25-7y

(25-7y)²+y²=25

625-350+49y²+y²=25

50y²=-250

y²=-5

Guest Dec 2, 2014
#3
+19054
+8
Best Answer

x²+y²=25 x+7y=25   x=? y=?

$$\\\boxed{x^2+y^2=25} \small{\text{ is a circle }}\\ \boxed{x+7y=25} \small{\text{ is a line}}\\$$

$$\small{\text{The line cut the circle in 2 Points.}} \\ \small{\text{Point 1 is ( x=4, y=3) }}\\ \small{\text{Point 2 is ( x=-3, y=4) }}\\$$

heureka  Dec 2, 2014
#4
+26544
+5

You have left out a "y" that multiplies the 350.

(25 - 7y)2 +y2 = 25

252 - 2*25*7*y + 72y2 + y2 = 25

625 - 350y + 50y2 = 25

50y2 - 350y + 600 = 0

y2 - 7y + 12 = 0

(y - 3)(y - 4) = 0

y  = 3 or y = 4

so x = 25 - 7*3 or x = 4  when y = 3

and x = 25 -7*4 or x = -3  when y = 4 (as Heureka illustrates).

.

Alan  Dec 2, 2014
#5
+19054
+5

x=25-7y

(25-7y)²+y²=25  okay

$$\underbrace{(25-7y)^2}_{=25^2-2*25*7*y+49y^2}+y^2=25 \\\\ 25^2-2*25*7*y+49y^2+y^2=25 \\\\ 50y^2-50*7*y + 625 - 25 = 0 \\ \\ 50y^2-50*7*y + 600= 0 \quad | \quad : 50\\ \\ y^2-7*y + 12= 0 \\ \\ y_{1,2}= \frac{7\pm\sqrt{49-4*12} }{2} \\ \\ y_{1,2}= \frac{7\pm\sqrt{49-48} }{2} \\ \\ y_{1,2}= \frac{7\pm 1}{2} \\ \\ y_1 = \frac{7 +1}{2} = \frac{8}{2} = 4 \qquad x_1 = 25 - 7*4 = -3\\ \\ y_2 = \frac{7 -1}{2} = \frac{6}{2} = 3 \qquad x_2 = 25 - 7*3 = 4\\ \\$$

heureka  Dec 2, 2014

### 13 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details