+0  
 
0
706
5
avatar+257 

If tanA+secA=e^x , then cosA=?

 Mar 29, 2016

Best Answer 

 #2
avatar+33652 
+15

If you replace sin x by sqrt(1- cos2x) then further manipulation gives cos(A) = 2ex/(e2x + 1)

 

.

 Mar 29, 2016
 #1
avatar+118690 
+15

If tanA+secA=e^x , then cosA=?

 

\(\frac{sinA}{cosA}+\frac{1}{cosA}=e^x\\ \frac{(sinA)+1}{cosA}=e^x\\ \frac{(sinA)+1}{cosA}=e^x\\ (sin(A)+1)e^{-x}=cosA\)

 

\(Cos(A)=\frac{1+sin(A)}{e^x}\)

 

I am not sure if you can do more than this.  Nothing is jumping out at me ://

 Mar 29, 2016
 #2
avatar+33652 
+15
Best Answer

If you replace sin x by sqrt(1- cos2x) then further manipulation gives cos(A) = 2ex/(e2x + 1)

 

.

Alan Mar 29, 2016
 #3
avatar+118690 
+10

Lets see

 

\(CosA=\frac{1+sinA}{e^x}\\ CosA=\frac{1+(1-cos^2A)^{0.5}}{e^x}\\ e^xCosA=1+(1-cos^2A)^{0.5}\\ e^xCosA-1=(1-cos^2A)^{0.5}\\ e^{2x}Cos^2A-2e^xCosA+1=1-Cos^2A\\ e^{2x}Cos^2A+Cos^2A-2e^xCosA=0\\ (e^{2x}+1)Cos^2A-2e^xCosA=0\\ (e^{2x}+1)Cos^2A-2e^xCosA=0\\ cosA[(e^{2x}+1)CosA-2e^x]=0\\ cosA=0 \qquad or \qquad (e^{2x}+1)CosA-2e^x=0\\ cosA=0 \qquad or \qquad CosA=\frac{2e^x}{ e^{2x}+1 }\\\)

 Apr 6, 2016
 #4
avatar+130071 
+10

tanA + secA = e^x

 

tanA  = e^x - secA     square both sides

 

tan^2A  = e^[2x] - 2secA*[e^x] + sec^2A

 

tan^2A  = e^[2x] - 2secA*[e^x] + tan^2A + 1

 

0 = e^[2x] - 2secAe^x + 1

 

2secAe^x = e^[2x] + 1

 

secA  = (e^[2x] + 1 )/ (2e^[2x])

 

cosA  = (2e^[2x] ) / ( e^[2x] + 1 )

 

Note that Melody gets an extraneous solution of cosA = 0 ......but this cannot be so, because this would imply that secA  = 1/cosA  = 1/0     and this would be undefined in the original assumption

 

 

cool cool cool

 Apr 6, 2016
 #5
avatar+118690 
0

Thanks Chris      smiley

I should have seen that      blush

 Apr 7, 2016

4 Online Users

avatar
avatar