If tanA+secA=e^x , then cosA=?
\(\frac{sinA}{cosA}+\frac{1}{cosA}=e^x\\ \frac{(sinA)+1}{cosA}=e^x\\ \frac{(sinA)+1}{cosA}=e^x\\ (sin(A)+1)e^{-x}=cosA\)
\(Cos(A)=\frac{1+sin(A)}{e^x}\)
I am not sure if you can do more than this. Nothing is jumping out at me ://
If you replace sin x by sqrt(1- cos2x) then further manipulation gives cos(A) = 2ex/(e2x + 1)
.
Lets see
\(CosA=\frac{1+sinA}{e^x}\\ CosA=\frac{1+(1-cos^2A)^{0.5}}{e^x}\\ e^xCosA=1+(1-cos^2A)^{0.5}\\ e^xCosA-1=(1-cos^2A)^{0.5}\\ e^{2x}Cos^2A-2e^xCosA+1=1-Cos^2A\\ e^{2x}Cos^2A+Cos^2A-2e^xCosA=0\\ (e^{2x}+1)Cos^2A-2e^xCosA=0\\ (e^{2x}+1)Cos^2A-2e^xCosA=0\\ cosA[(e^{2x}+1)CosA-2e^x]=0\\ cosA=0 \qquad or \qquad (e^{2x}+1)CosA-2e^x=0\\ cosA=0 \qquad or \qquad CosA=\frac{2e^x}{ e^{2x}+1 }\\\)
tanA + secA = e^x
tanA = e^x - secA square both sides
tan^2A = e^[2x] - 2secA*[e^x] + sec^2A
tan^2A = e^[2x] - 2secA*[e^x] + tan^2A + 1
0 = e^[2x] - 2secAe^x + 1
2secAe^x = e^[2x] + 1
secA = (e^[2x] + 1 )/ (2e^[2x])
cosA = (2e^[2x] ) / ( e^[2x] + 1 )
Note that Melody gets an extraneous solution of cosA = 0 ......but this cannot be so, because this would imply that secA = 1/cosA = 1/0 and this would be undefined in the original assumption