If tanA=xsinB/1-xcosB & tanB=ysinA/1-ycosA then prove that -
sinA/sinB= x/y
If tanA=xsinB/[1-xcosB] & tanB=ysinA/[1-ycosA] then prove that -
sinA/sinB= x/y
tanA = sinA/cosA and tanB = sinB/ cosB ......therefore, we can write :
sinA /cosA = [xsinB]/ [1 - xcosB] (1)
sinB/cosB = [ysinA] / [ 1 - y cosA] (2)
Rearranging (1)and (2), we have
[sinA] / [sinB] = [x cosA]/ [1 - xcosB] (3)
[sinA]/ [sinB] = [1 - ycosA] / [y cosB] (4)
Setting the right sides of (3) and (4) equal gives us
[x cosA]/ [1 - xcosB] = [1 - ycosA] / [y cosB] separate the right side
[xcosA] / [1 - xcosB] = [ 1/[ycosB] - cosA/cosB] cross-multiply
[xcosA]= [1 - xcosB] [1/[ycosB] - cosA/cosB]
[xcosA] = 1/[ycosB] - [x/y] - cosA/cosB + xcosA
[x/y] = 1/[ycosB] - [cosA/cosB] get a common denominator on the right
[x/y] = [ 1 - ycosA] / [ ycosB]
And, from (4), [1 - ycosA]/ [y cosB] = [sinA] / [sinB].......therefore,
x/y = sinA / sin B