One angel T is divided in two part A & B where tanA/tanB=x/y. Prove that -
sin(A-B)=(x-y/x+y)*sinT
One angle T is divided in two part A & B where tanA/tanB=x/y. Prove that -
sin(A-B)=(x-y)/(x+y)*sinT
sinT = sin(A + B)
x = tan A, y = tan B
(x - y)/(x + y)sin(A + B) =
[tanA - tanB] / [tanA + tanB] sin(A + B) =
[(sinA/cosA) - (sinB/cosB)] / [ (sinA/cosA) + (sinB/cosB)] sin(A + B) =
[(sinAcosB - sinBcosA) / cosAcosB] / [(sinAcosB + sinBcosA)/ cosAcosB] sin(A + B) =
([sinAcosB - sinBcosA] /[ [sinAcosB + sinBcosA] ) * [ sinAcosB + sinBcosA] =
[sinAcosB - sinBcosA] =
sin(A - B)