Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
947
3
avatar+257 

log(36÷25)^3+3log(2÷9)-log(2)=2log(16÷125) [prove that math]

 Mar 18, 2016

Best Answer 

 #1
avatar+118703 
+10

log(36÷25)^3+3log(2÷9)-log(2)=2log(16÷125)

 

log(36÷25)3+3log(2÷9)log(2)=2log(16÷125)LHS=3log(65)2+3(log2log9)log2LHS=6log(65)+3log23log9log2LHS=6log(6)6log5+3log23log9log2LHS=6log(6)6log5+3log23log32log2LHS=6log(6)6log5+3log26log3log2LHS=6log(6)6log5+2log26log3LHS=2[3log(6)3log5+log23log3]LHS=2[log(63)log53+log2log33]LHS=2[log2635333]LHS=2[log223335333]LHS=2[log16125]LHS=2log(16÷125)LHS=RHSQED

 Mar 18, 2016
 #1
avatar+118703 
+10
Best Answer

log(36÷25)^3+3log(2÷9)-log(2)=2log(16÷125)

 

log(36÷25)3+3log(2÷9)log(2)=2log(16÷125)LHS=3log(65)2+3(log2log9)log2LHS=6log(65)+3log23log9log2LHS=6log(6)6log5+3log23log9log2LHS=6log(6)6log5+3log23log32log2LHS=6log(6)6log5+3log26log3log2LHS=6log(6)6log5+2log26log3LHS=2[3log(6)3log5+log23log3]LHS=2[log(63)log53+log2log33]LHS=2[log2635333]LHS=2[log223335333]LHS=2[log16125]LHS=2log(16÷125)LHS=RHSQED

Melody Mar 18, 2016
 #2
avatar+26396 
+10

log(36÷25)^3+3log(2÷9)-log(2)=2log(16÷125) [prove that math]

 

log[(3625)3]+3log(29)log(2)?=2log(16125)log[(363253)]+log[(29)3]log(2)?=2log(16125)log[(363253)]+log[(2393)]log(2)?=2log(16125)log(363253239312)?=2log(16125)log(3632532293)?=2log(16125)log((49)32532293)?=2log(16125)log(43932532293)?=2log(16125)log(43253221)?=2log(16125)log(43(52)3221)?=2log(16125)log(43(52)34)?=2log(16125)log(43(53)24)?=2log(16125)log(43(53)24)?=2log(16125)log(4312524)?=2log(16125)log(441252)?=2log(16125)log((42)21252)?=2log(16125)log(1621252)?=2log(16125)log[(16125)2]?=2log(16125)2log(16125)=2log(16125)

 

laugh

 Mar 18, 2016
 #3
avatar+257 
0

Thank You  MELODY and HEUREKA...smileylaugh

AaratrikRoy  Mar 18, 2016

0 Online Users