We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
675
1
avatar+603 

The quadratic $-x^2+2x-4$ can be written in the form $a(x+b)^2+c$, where $a$, $b$, and $c$ are constants. What is $a+b+c$?

 May 4, 2018

Best Answer 

 #1
avatar+22343 
+3

The quadratic $-x^2+2x-4$ can be written in the form $a(x+b)^2+c$,
where $a$, $b$, and $c$ are constants.
What is $a+b+c$?

 

\(\begin{array}{|rcll|} \hline && -x^2+2x-4 \\ &=& -(x^2-2x)-4\\ &=& -\left((x-1)^2-1 \right) - 4 \\ &=& -(x-1)^2 +1 - 4 \\ &=& -(x-1)^2 -3 \quad & | \quad a(x+b)^2+c \\ &&& |\quad a=-1 \\ &&& |\quad b=-1 \\ &&& |\quad c=-3 \\ &&& |\mathbf{a+b+c} = -1-1-3 \mathbf{= - 5 } \\ \hline \end{array} \)

 

 

laugh

 May 4, 2018
 #1
avatar+22343 
+3
Best Answer

The quadratic $-x^2+2x-4$ can be written in the form $a(x+b)^2+c$,
where $a$, $b$, and $c$ are constants.
What is $a+b+c$?

 

\(\begin{array}{|rcll|} \hline && -x^2+2x-4 \\ &=& -(x^2-2x)-4\\ &=& -\left((x-1)^2-1 \right) - 4 \\ &=& -(x-1)^2 +1 - 4 \\ &=& -(x-1)^2 -3 \quad & | \quad a(x+b)^2+c \\ &&& |\quad a=-1 \\ &&& |\quad b=-1 \\ &&& |\quad c=-3 \\ &&& |\mathbf{a+b+c} = -1-1-3 \mathbf{= - 5 } \\ \hline \end{array} \)

 

 

laugh

heureka May 4, 2018

13 Online Users

avatar
avatar