+0  
 
0
361
3
avatar

Flying against the wind, a jet travels 6930 miles in 9 hours. Flying with the wind, the same jet travels 6060 miles in 6 hours. What is the rate of the jet in still air and what is the rate of the wind?

 Aug 23, 2021
 #1
avatar+592 
0

Let a be the speed the jet travels, and let b be the speed the wind travels. 

 

$9(a-b)=6930$

$a-b=\frac{6930}9=770$

$6(a+b)=6060$

$a+b=\frac{6060}6=1010$

 

$a+b=770$

$a-b=1010$

You can finish the rest :)

 Aug 23, 2021
 #3
avatar
0

Should be:  a  -  b ==770

                      a + b ==1010

Guest Aug 23, 2021
 #2
avatar
0

[6060 / 6  -  6930/9] ==[1010  -  770] / 2 ==120 mph - the rate of the wind.

 

[1010  +  770] / 2 ==890 mph - speed of the jet in still air.

 Aug 23, 2021

2 Online Users

avatar