+0

# help algebra

0
114
1

If we write sqrt(2) + sqrt(3) + 1/(2*sqrt(2) + 3*sqrt(3)) in the form (a*sqrt(2) + b*sqrt(3))/c such that a, b, and c are positive integers and c is as small as possible, then what is a + b + c?

Feb 25, 2022

#1
+1

Rationalize the denominator of the term:  1 / [ 2·sqrt(2) + 3·sqrt(3) ]

by multiplying both the numerator and denominator by the conjugate of the

denominator which is:  2·sqrt(2) - 3·sqrt(3).

1 / [ 2·sqrt(2) + 3·sqrt(3) ]    ·    [ 2·sqrt(2) - 3·sqrt(3) ] / [ 2·sqrt(2) - 3·sqrt(3) ]

=     [ 2·sqrt(2) - 3·sqrt(3) ] / -19     =    [ 3·sqrt(3) -  2·sqrt(2) ] / 19

Rewrite this as two separate fractions:  3·sqrt(3) / 19  -  2·sqrt(2) / 19

Now, write the other two terms with a donominator of 19:

sqrt(2)  =  19·sqrt(2) / 19          and         sqrt(3)  =  19·sqrt(3) / 19

Then, simplify this:  19·sqrt(2) / 19  +  19·sqrt(3) / 19  +  3·sqrt(3) / 19  -  2·sqrt(2) / 19

=    17·sqrt(2) / 19  +  22·sqrt(3) / 19

=     [ 17·sqrt(2) / 19  +  22·sqrt(3) ] / 19

From this, you can find the answer.

Feb 25, 2022