Let f(n) = n^2/(n^2 - n + 1).
Find the largest integer n such that f(2) * f(3) * f(4) * ... * f(n) < 1.98.
\begin{eqnarray*} f(2) &=& 1.33333 \\ f(2)\cdot f(3) &=& 1.71429 \\ f(2)\cdot f(3) \cdot f(4) &=& 2.10989 \end{eqnarray*} This table shows that the largest such $n$ is 3.