+0  
 
0
234
1
avatar

 

Let's take a look at (x + y)^2 (x - y)^2 and (x^2 + y^2)(x^2 - y^2). While Beeker believes that these two expressions are equal for all real numbers x and y Clod believes they are not! Let's get to the bottom of this!

a) Evaluate (x + y)^2 (x - y)^2  and (x^2 + y^2)(x^2 - y^2) for x = 7 and y = 11

b) For which values of x and y does (x + y)^2 (x - y)^2  equal (x^2 + y^2)(x^2 - y^2)? For which values of x and y does (x + y)^2 (x - y)^2 not equal (x^2 + y^2)(x^2 - y^2)?

 Sep 5, 2022
 #1
avatar+53 
-1

\((x+y)^2\)expands to \(x^2+y^2+2xy\) while the right side doesn't expand at all. They're not equal for some values of x and y.

 Sep 5, 2022

1 Online Users

avatar