+0  
 
0
102
3
avatar+2709 

Let  \(f(x) = Ax - 2B^2\)and \(g(x) = Bx\), where \(B \neq 0\) . If \(f(g(1)) = 0\) , what is \(A\)  in terms of \(B\)?

tertre  Feb 5, 2018
 #1
avatar+86859 
+2

f(x)  =   Ax - 2B^2      g(x)   =  Bx      

 

g(1)  =  B(1)  = B

 

So

 

f( g(1) )  =  f(B)   =  0

 

A(B) -  2B^2  =  0

 

A (B)  =  2B^2       

 

A  =    2B

 

 

cool cool cool

CPhill  Feb 5, 2018
 #2
avatar+2709 
+1

Very good! Amazing, CPhill!

tertre  Feb 5, 2018
 #3
avatar+86859 
0

It was nothing....really    !!!

 

 

cool cool cool

CPhill  Feb 5, 2018

14 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.