We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
107
2
avatar

Consider the line with equation (2-i)z + (2+i)\overline(z) = 20. Where does this line intersect the real axis?

 May 2, 2019
 #1
avatar+5770 
+1

\((2-i)z + (2+i)\bar{z} = 20\\ 2(z+\bar{z})-i(z-\bar{z}) = 20\\ 4Re(z) - 2iIm(z)= 20\\ \text{On the real axis }Im(z)=0\\ 4Re(z) = 20\\ Re(z) = 5\\ z=Re(z)+i Im(z)= 5 + i0 = 5\)

.
 May 2, 2019
edited by Rom  May 2, 2019
 #2
avatar+23041 
+1

Consider...

\(\bar{r} = 2-i\\ r = 2+i\\ \bar{r}z+r\bar{z}=20 \quad | \quad \bar{r}z=r\bar{z}\\ 2\bar{r}z = 20 \\ \bar{r}z = 10 \\ (2-i)z = 10\\ 2z-\underbrace{iz}_{=0} = 20 \\ 2z=10\\ \mathbf{z=5}\)

 

laugh

 May 2, 2019

11 Online Users