We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
82
3
avatar

In triangle ABC, S is a point on side BC such that BS:SC = 1:2, and T is a point on side AC such that AT:TC = 4:3. Let U be the intersection of AS and BT.

We can write \(\overrightarrow{T} = w \overrightarrow{A} + x \overrightarrow{C}, \overrightarrow{S} = y \overrightarrow{B} + z \overrightarrow{C}\)for some real values of w, x, y, and z. Find w, x, y, and z.

 

We can also write \(\overrightarrow{U} = x \overrightarrow{A} + y \overrightarrow{B} + z \overrightarrow{C}\) for some real values of x, y, z. Find x, y, z.

 

Find\(\frac{AU}{US}\)

 Aug 4, 2019
 #1
avatar+23071 
+2

 

1.

In triangle ABC, S is a point on side BC such that BS:SC = 1:2,

and T is a point on side AC such that AT:TC = 4:3.
Let U be the intersection of AS and BT.

We can write \( \vec{T} = w \vec{A} + x \vec{C}\), \(\vec{S} = y \vec{B} + z \vec{C}\) for some real values of w, x, y, and z.
Find w, x, y, and z.

 

\(\begin{array}{|rcll|} \hline \vec{T} &=& \vec{A}+ \dfrac{4}{7}\left(\vec{C}-\vec{A} \right) \\ \vec{T} &=& \vec{A}+ \dfrac{4}{7}\vec{C} -\dfrac{4}{7}\vec{A} \\ \vec{T} &=& \dfrac{3}{7}\vec{A}+ \dfrac{4}{7}\vec{C} \quad &|\quad \vec{T} = w \vec{A} + x \vec{C}\\ \hline \mathbf{w}&=& \mathbf{\dfrac{3}{7}} \\ \mathbf{x}&=& \mathbf{\dfrac{4}{7}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \vec{S} &=& \vec{C}+ \dfrac{2}{3}\left(\vec{B}-\vec{C} \right) \\ \vec{S} &=& \vec{C}+ \dfrac{2}{3}\vec{B} -\dfrac{2}{3}\vec{C} \\ \vec{S} &=& \dfrac{2}{3}\vec{B}+ \dfrac{1}{3}\vec{C} \quad &|\quad \vec{S} = y \vec{B} + z \vec{C}\\ \hline \mathbf{y}&=& \mathbf{\dfrac{2}{3}} \\ \mathbf{z}&=& \mathbf{\dfrac{1}{3}} \\ \hline \end{array}\)

 

laugh

 Aug 4, 2019
 #2
avatar+23071 
+2

2.

In triangle ABC, S is a point on side BC such that BS:SC = 1:2,

and T is a point on side AC such that AT:TC = 4:3.
Let U be the intersection of AS and BT.

 

Find \(\dfrac{AU}{US}\)

 

\(\begin{array}{|rcll|} \hline \vec{u} &=& \vec{A}-\vec{C} \\ \vec{v} &=& \vec{B}-\vec{C} \\ \hline \vec{U}-\vec{C} &=& \dfrac{3}{7}\vec{u}+ \lambda\left( \vec{v}-\dfrac{3}{7}\vec{u} \right) \quad | \quad \lambda \text{ is a real value} \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \quad | \quad \dfrac{US}{AS} \text{ is a real value} \\ \hline \vec{U}-\vec{C} = \dfrac{3}{7}\vec{u}+ \lambda\left( \vec{v}-\dfrac{3}{7}\vec{u} \right) &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \\ \dfrac{3}{7}\vec{u}+ \lambda\left( \vec{v}-\dfrac{3}{7}\vec{u} \right) &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \\ \dfrac{3}{7}\vec{u}+ \lambda \vec{v}-\dfrac{3}{7}\lambda\vec{u} &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\vec{u}-\dfrac{2}{3}\dfrac{US}{AS}\vec{v} \\ \vec{u}\left(\underbrace{\dfrac{3}{7}-\dfrac{3}{7}\lambda-\dfrac{US}{AS} }_{=0}\right) &=& \vec{v}\left(\underbrace{\dfrac{2}{3}-\dfrac{2}{3}\dfrac{US}{AS}-\lambda }_{=0} \right) \quad | \quad \vec{u} \text{ and } \vec{v}\text{ are independent} \\ \hline \dfrac{3}{7}-\dfrac{3}{7}\lambda-\dfrac{US}{AS} &=& 0 \\ \quad |\quad \cdot \dfrac{7}{3} \\ 1- \lambda-\dfrac{7}{3}\dfrac{US}{AS} &=& 0 \qquad (1) \\\\ \dfrac{2}{3}-\dfrac{2}{3}\dfrac{US}{AS}-\lambda &=& 0 \qquad (2) \\ \hline (1)-(2): \qquad 1- \lambda-\dfrac{7}{3}\dfrac{US}{AS} - \left( \dfrac{2}{3}-\dfrac{2}{3}\dfrac{US}{AS}-\lambda \right) &=& 0 \\ 1- \lambda-\dfrac{7}{3}\dfrac{US}{AS} - \dfrac{2}{3}+\dfrac{2}{3}\dfrac{US}{AS}+\lambda &=& 0 \\ \dfrac{1}{3} -\dfrac{5}{3}\dfrac{US}{AS} &=& 0 \\ \dfrac{5}{3}\dfrac{US}{AS} &=& \dfrac{1}{3} \quad | \quad \cdot \dfrac{3}{5} \\ \mathbf{ \dfrac{US}{AS} } &=& \mathbf{\dfrac{1}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{AU}{AS} &=& \left( 1-\dfrac{US}{AS} \right) \\ \dfrac{AU}{AS} &=& \left( 1-\dfrac{1}{5} \right) \\ \mathbf{ \dfrac{AU}{AS} } &=& \mathbf{\dfrac{4}{5}} \\ \hline \dfrac{AU}{US} &=& \dfrac{ \dfrac{AU}{AS} }{ \dfrac{US}{AS} } \\ \dfrac{AU}{US} &=& \dfrac{ \dfrac{4}{5} }{ \dfrac{1}{5} } \\ \mathbf{ \dfrac{AU}{US} } &=& \mathbf{4} \\ \hline \end{array}\)

 

laugh

 Aug 4, 2019
edited by heureka  Aug 4, 2019
 #3
avatar+23071 
+2

3.

In triangle ABC, S is a point on side BC such that BS:SC = 1:2,
and T is a point on side AC such that AT:TC = 4:3.
Let U be the intersection of AS and BT.

 

We can also write \(\vec{U} = x \vec{A} + y \vec{B} + z \vec{C}\)
for some real values of x, y, z. Find x, y, z.

 

\(\begin{array}{|rcll|} \hline \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \quad | \quad \vec{u} = \vec{A}-\vec{C},\ \vec{v} = \vec{B}-\vec{C} \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\left(\vec{B}-\vec{C}\right)+ \dfrac{US}{AS}\left( \vec{A}-\vec{C}-\dfrac{2}{3}\left(\vec{B}-\vec{C}\right)\right) \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{US}{AS}\left( \vec{A}-\vec{C}-\dfrac{2}{3}\vec{B}+\dfrac{2}{3}\vec{C}\right) \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{US}{AS}\left( \vec{A}-\dfrac{2}{3}\vec{B}-\dfrac{1}{3}\vec{C}\right) \quad | \quad \dfrac{US}{AS}=\dfrac{1}{5} \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{1}{5}\left( \vec{A}-\dfrac{2}{3}\vec{B}-\dfrac{1}{3}\vec{C}\right) \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{1}{5}\vec{A}-\dfrac{2}{15}\vec{B}-\dfrac{1}{15}\vec{C} \\ \vec{U} &=& \vec{C}+\dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{1}{5}\vec{A}-\dfrac{2}{15}\vec{B}-\dfrac{1}{15}\vec{C} \\ \vec{U} &=& \dfrac{1}{5}\vec{A} +\dfrac{8}{15}\vec{B}+\dfrac{4}{15}\vec{C} \quad |\quad \vec{U} = x \vec{A} + y \vec{B} + z \vec{C} \\ \hline \mathbf{x}&=& \mathbf{\dfrac{1}{5}} \\ \mathbf{y}&=& \mathbf{\dfrac{8}{15}} \\ \mathbf{z}&=& \mathbf{\dfrac{4}{15}} \\ \hline \end{array}\)

 

laugh

 Aug 4, 2019

29 Online Users

avatar
avatar
avatar
avatar
avatar