We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Six green balls and four red balls are in a bag. A ball is taken from the bag, its color recorded, then placed back in the bag. A second ball is taken and its color recorded. What is the probability the two balls are the same color?

Guest Jul 2, 2018

#1**+2 **

There are 6 green balls and 4 red balls, making 10 total balls. The probability of picking a green ball first is \(\frac{6}{10}\) .

Since there are replacements, there will be still 10 balls in the bag. Now, for the second draw, you pick green again; making the probability, \(\frac{5}{10}\) . So, the probability of picking a green ball both times is \(\frac{6}{10}*\frac{5}{10}=\frac{30}{100}=\frac{3}{10}\) .

Next, the probability of picking a red ball is \(\frac{4}{10}\) . Doing the same as before, we get: \(\frac{4}{10}*\frac{3}{10}=\frac{3}{25}\) .

I'm leaving the next step up to you, to solve... What can we do after this?

tertre Jul 2, 2018