+0  
 
0
68
2
avatar

What is the value of $b+c$ if $x^2+bx+c>0$ only when $x\in (-\infty, -2)\cup(3,\infty)$?

 

What is the value of     \(b+c  \quad if   \quad   x^2+bx+c>0  \)     only when     \(x\in (-\infty, -2)\cup(3,\infty) \)

Guest Mar 2, 2018
edited by Melody  Mar 2, 2018
Sort: 

2+0 Answers

 #1
avatar+92441 
+1

What is the value of   \(b+c \)   if     \(x^2+bx+c>0 \)     only when    \(x\in (-\infty, -2)\cup(3,\infty)\)?

 

Consider the concave up parabola   y=x^2+bx+c

\(x^2+bx+c>0 \)    will be true when y is positive, which is when the graph is above the x axis.

 

The roots of this graph are 

        \(x=\frac{-b\pm\sqrt{b^2-4c}}{2}\\ x=\frac{-b}{2}\pm\frac{\sqrt{b^2-4c}}{2}\\\)

the axis of symmetry of this graph will be     \(x=\frac{-b}{2}\)

 

No consider the domain where x is poistive.

It is less than -2 and greater then 3  SO the axis of symmetry must be half way between these points.  (-2+3)/2=-1/2

so

\(\frac{-b}{2}=\frac{-1}{2}\\ b=1\)

 

Also

 

\(\frac{-b}{2}+\frac{\sqrt{b^2-4c}}{2}=3\\ -b+\sqrt{b^2-4c}=6\\ sub\;in\;b=1\\ -1+\sqrt{1^2-4c}=6\\ \sqrt{1-4c}=7\\ 1-4c=49\\ -4c=48\\ c=-12\\ ~\\ b+c=1+-12=-11\)

Melody  Mar 2, 2018
 #2
avatar
0

Sorry Melody, but the axis of symmetry is x = 1/2 not -1/2.

Also, it's quicker to say that the equation of the parabola must be 

\(y=(x+2)(x-3)=x^2-x-6\)

so b + c =  -7.

Guest Mar 2, 2018

7 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy