+0  
 
0
49
1
avatar

If $f(x) = \frac{4x+1}{3}$ what is the value of $\left[f^{-1}(1)\right]^{-1}$?

Guest Mar 20, 2018
Sort: 

1+0 Answers

 #1
avatar+19207 
+1

If $f(x) = \frac{4x+1}{3}$ what is the value of $\left[f^{-1}(1)\right]^{-1}$?

 

 

\(\begin{array}{|rcll|} \hline f(x) &=& \dfrac{4x+1}{3} \\ \hline y &=& \dfrac{4x+1}{3} \\\\ 3y &=& 4x+1 \\\\ 3y-1 &=& 4x \\\\ x &=& \dfrac{3y-1}{4} \quad & | \quad x \leftrightarrow y \\\\ y &=& \dfrac{3x-1}{4} \\\\ f^{-1}(x) &=& \dfrac{3x-1}{4} \\ \hline f^{-1}(1) &=& \dfrac{3\cdot 1-1}{4} \\\\ &=& \dfrac{2}{4} \\\\ &=& \dfrac{1}{2} \\ \hline \left[f^{-1}(1)\right]^{-1} &=& \left(\dfrac{1}{2}\right)^{-1} \\\\ &=& \dfrac{1}{ \left(\dfrac{1}{2}\right)^{1}} \\\\ &=& \dfrac{1}{ \dfrac{1}{2} } \\\\ &=& 1\cdot \dfrac{2}{1} \\\\ \mathbf{ \left[f^{-1}(1)\right]^{-1}} &\mathbf{=} & \mathbf{2} \\ \hline \end{array}\)

 

laugh

heureka  Mar 20, 2018

23 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details