+0  
 
0
1827
7
avatar+78 

What is the value of x?

cos 63°  = sin x

 

x = __°

 Mar 22, 2018
 #1
avatar+655 
+1

cos 63°  = sin x

 

After switching sides:

 

\sin \left(x\right)=\cos \left(63^{\circ \:}\right)

 

Using \cos \left(x\right)=\sin \left(90^{\circ \:}-x\right)

 

We have:

 

\sin \left(x\right)=\sin \left(90^{\circ \:}-63^{\circ \:}\right)

 

So x = 180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}\(180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}\)

 Mar 22, 2018
 #2
avatar+655 
+1

Oops, the LaTeX didn't show up :(

 Mar 22, 2018
 #3
avatar+655 
+1

I'n just going to tell you the answer so I don't have to retype the whole thing :)

 Mar 22, 2018
 #4
avatar+655 
+3

x = 180° - 27° + 360° n, x = 360° n + 27°

 Mar 22, 2018
 #5
avatar+129899 
+3

We jhave the identity....

 

cos (A)  = sin (90- A)

 

So

 

cos (63)  = sin (90- 63)

 

cos (63)  = sin (27).....so....x  = 27  (degrees)

 

cool cool cool

 Mar 22, 2018
 #6
avatar+655 
+1

Do you know what I did wrong?

supermanaccz  Mar 22, 2018
 #7
avatar+129899 
0

Your answer is good, Supermanaccz....it would cover all possibilities.....mine was just using a basic identity.......both are OK

 

 

cool cool cool

CPhill  Mar 22, 2018

0 Online Users