+0  
 
0
71
7
avatar+46 

What is the value of x?

cos 63°  = sin x

 

x = __°

jesshobbs  Mar 22, 2018
Sort: 

7+0 Answers

 #1
avatar+560 
+1

cos 63°  = sin x

 

After switching sides:

 

\sin \left(x\right)=\cos \left(63^{\circ \:}\right)

 

Using \cos \left(x\right)=\sin \left(90^{\circ \:}-x\right)

 

We have:

 

\sin \left(x\right)=\sin \left(90^{\circ \:}-63^{\circ \:}\right)

 

So x = 180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}\(180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}\)

supermanaccz  Mar 22, 2018
 #2
avatar+560 
+1

Oops, the LaTeX didn't show up :(

supermanaccz  Mar 22, 2018
 #3
avatar+560 
+1

I'n just going to tell you the answer so I don't have to retype the whole thing :)

supermanaccz  Mar 22, 2018
 #4
avatar+560 
+3

x = 180° - 27° + 360° n, x = 360° n + 27°

supermanaccz  Mar 22, 2018
 #5
avatar+85673 
+3

We jhave the identity....

 

cos (A)  = sin (90- A)

 

So

 

cos (63)  = sin (90- 63)

 

cos (63)  = sin (27).....so....x  = 27  (degrees)

 

cool cool cool

CPhill  Mar 22, 2018
 #6
avatar+560 
+1

Do you know what I did wrong?

supermanaccz  Mar 22, 2018
 #7
avatar+85673 
0

Your answer is good, Supermanaccz....it would cover all possibilities.....mine was just using a basic identity.......both are OK

 

 

cool cool cool

CPhill  Mar 22, 2018

14 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details