+0  
 
0
380
7
avatar+54 

What is the value of x?

cos 63°  = sin x

 

x = __°

 Mar 22, 2018
 #1
avatar+637 
+1

cos 63°  = sin x

 

After switching sides:

 

\sin \left(x\right)=\cos \left(63^{\circ \:}\right)

 

Using \cos \left(x\right)=\sin \left(90^{\circ \:}-x\right)

 

We have:

 

\sin \left(x\right)=\sin \left(90^{\circ \:}-63^{\circ \:}\right)

 

So x = 180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}\(180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}\)

.
 Mar 22, 2018
 #2
avatar+637 
+1

Oops, the LaTeX didn't show up :(

 Mar 22, 2018
 #3
avatar+637 
+1

I'n just going to tell you the answer so I don't have to retype the whole thing :)

 Mar 22, 2018
 #4
avatar+637 
+3

x = 180° - 27° + 360° n, x = 360° n + 27°

 Mar 22, 2018
 #5
avatar+96368 
+3

We jhave the identity....

 

cos (A)  = sin (90- A)

 

So

 

cos (63)  = sin (90- 63)

 

cos (63)  = sin (27).....so....x  = 27  (degrees)

 

cool cool cool

 Mar 22, 2018
 #6
avatar+637 
+1

Do you know what I did wrong?

supermanaccz  Mar 22, 2018
 #7
avatar+96368 
0

Your answer is good, Supermanaccz....it would cover all possibilities.....mine was just using a basic identity.......both are OK

 

 

cool cool cool

CPhill  Mar 22, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.