+0

0
524
7
+54

What is the value of x?

cos 63°  = sin x

x = __°

Mar 22, 2018

#1
+638
+1

cos 63°  = sin x

After switching sides:

\sin \left(x\right)=\cos \left(63^{\circ \:}\right)

Using \cos \left(x\right)=\sin \left(90^{\circ \:}-x\right)

We have:

\sin \left(x\right)=\sin \left(90^{\circ \:}-63^{\circ \:}\right)

So x = 180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}$$180^{\circ \:}-27^{\circ \:}+360^{\circ \:}n,\:x=360^{\circ \:}n+27^{\circ \:}$$

.
Mar 22, 2018
#2
+638
+1

Oops, the LaTeX didn't show up :(

Mar 22, 2018
#3
+638
+1

I'n just going to tell you the answer so I don't have to retype the whole thing :)

Mar 22, 2018
#4
+638
+3

x = 180° - 27° + 360° n, x = 360° n + 27°

Mar 22, 2018
#5
+100456
+3

We jhave the identity....

cos (A)  = sin (90- A)

So

cos (63)  = sin (90- 63)

cos (63)  = sin (27).....so....x  = 27  (degrees)

Mar 22, 2018
#6
+638
+1

Do you know what I did wrong?

supermanaccz  Mar 22, 2018
#7
+100456
0

Your answer is good, Supermanaccz....it would cover all possibilities.....mine was just using a basic identity.......both are OK

CPhill  Mar 22, 2018