We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
243
2
avatar

1. Let $f(x)$ be the polynomial \[f(x)=x^7-3x^3+2.\]If $g(x) = f(x + 1)$, what is the sum of the coefficients of $g(x)$?

 

2. Expand $(2z^2 + 5z - 6)(3z^3 - 2z + 1)$.

 Mar 30, 2018
 #1
avatar+4221 
+2

2. Distribute parenthesis,  apply minus-plus rules, and solve to get \(6z^5+15z^4-22z^3-8z^2+17z-6\)

.
 Mar 30, 2018
 #2
avatar+100595 
+1

f(x)  = x^7 - 3x^3  + 2

g(x)  = f(x + 1)   =  (x + 1)^7 - 3(x+ 1)^3 + 2

The sum of the the coefficients  of g(x)  =   

Sum of the entries in Row 7 of Pascal^s Triangle  =  2^7 -

3 * Sum of the entries in Row 3  of Pascal's Triangle  = 3*2^3  +

2 =

 

2^7 - 3*2^3  +  2   =   106

 

 

 

(2z^2 + 5z - 6)(3z^3 - 2z + 1)

 

2z^2(3z^3 - 2z + 1)  + 5z(3z^3 - 2z + 1)  - 6(3z^3 - 2z + 1)

6z^5 - 4z^3 + 2z^2  + 15z^4 - 10z^2 + 5z  - 18z^3 + 12z - 6    combine like terms

6z^5 + 15z^4 - 22z^3 - 8z^2 + 17z - 6

 

 

cool cool cool

 Mar 30, 2018

22 Online Users

avatar
avatar
avatar