+0

# Help asap pls

0
61
1

Suppose f is a polynomial such that f(0) = 47, f(1) = 32, f(2) = -13, and f(3)=16. What is the sum of the coefficients of f?

(pls show work)

Guest Feb 18, 2018
Sort:

#1
+84385
+1

Suppose \$f\$ is a polynomial such that \$f(0) = 47\$, \$f(1) = 32\$, \$f(2) = -13\$, and \$f(3)=16\$. What is the sum of the coefficients of \$f\$?

Guess that we have a third degree polynomial of the form  ax^3 + bx^2 + cx + d

If  f(0)  =  47, then d =  47

And we have this system

a + b + c + 47  = 32  ⇒   a +  b + c   =  -15      (1)

8a + 4b + 2c + 47  = -13  ⇒  8a + 4b + 2c  = - 60   (2)

27a + 9b + 3c + 47  = 16  ⇒  27a + 9b + 3c  =  -31    (3)

Multiply (1)  by -2  add to (2)  we get

6a + 2b =  -30    ⇒  3a + b  = -15 ⇒  -9a - 3b = 45    (4)

Multiply (1)  by -3   add to (3)  we get

24a + 6b  = 14  ⇒  12a + 3b = 7   (5)

Add  (4)  and (5)  we get

3a =  52    ⇒  a    =  52/3

3(52/3) + b  = - 15

52 + b  =  -15

b =  -67

52/3   -  67 + c  = -15

52/3 + c  =  52

52 + 3c  = 156

3c  =  104

c  =  104/3

So

a + b + c + d  =

52/3  - 67  + 104/3  + 47

156/3  - 20  =

52  -  20   =  32

CPhill  Feb 18, 2018
edited by CPhill  Feb 18, 2018

### 10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details