+0  
 
0
125
3
avatar+761 

Help asap thanks please!

what is the equation of the circle with center (-6,7) that passes through the poing (4,-2) ?

NotSoSmart  May 26, 2017

Best Answer 

 #1
avatar+4710 
+2

We need to find the distance between (-6, 7) and (4, -2) . That distance is the radius of this circle.

 

distance  \(=\sqrt{[(-6)-(4)]^2+[(7)-(-2)]^2} \\~\\ =\sqrt{[10]^2+[9]^2} \\~\\ =\sqrt{100+81} \\~\\=\sqrt{181}\)

 

So...the radius of this circle is \( \sqrt{181} \) , and the center of this circle is (-6, 7) .

This makes the equation:

 

( y - 7 )2 + ( x - (-6) )2   =   ( \( \sqrt{181} \)  )2

 

( y - 7 )2 + ( x + 6 )2   =   181

hectictar  May 26, 2017
Sort: 

3+0 Answers

 #1
avatar+4710 
+2
Best Answer

We need to find the distance between (-6, 7) and (4, -2) . That distance is the radius of this circle.

 

distance  \(=\sqrt{[(-6)-(4)]^2+[(7)-(-2)]^2} \\~\\ =\sqrt{[10]^2+[9]^2} \\~\\ =\sqrt{100+81} \\~\\=\sqrt{181}\)

 

So...the radius of this circle is \( \sqrt{181} \) , and the center of this circle is (-6, 7) .

This makes the equation:

 

( y - 7 )2 + ( x - (-6) )2   =   ( \( \sqrt{181} \)  )2

 

( y - 7 )2 + ( x + 6 )2   =   181

hectictar  May 26, 2017
 #2
avatar+74 
+2

Well done.

RosyWintercat  May 26, 2017
 #3
avatar+761 
+2

Thank you! :)

NotSoSmart  May 26, 2017

13 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details