We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
73
1
avatar

Consider the line with equation \((2-i)z + (2+i)\overline{z} = 20\). Where does this line intersect the real axis?

 Sep 28, 2019

Best Answer 

 #1
avatar+6045 
+2

\((2-i)z+(2+i)\bar{z} = 20\\ z = x + i y\\ (2-i)(x+iy) + (2+i)(x-i y) = 20\\ (2x+y) - i(x-2y)+(2x+y)+i(x-2y)=20\\ 2x+y=10\\ y=-2x+10\\ y=0 \Rightarrow x=5\\ \text{Intersection is at $z=5$}\)

.
 Sep 28, 2019
 #1
avatar+6045 
+2
Best Answer

\((2-i)z+(2+i)\bar{z} = 20\\ z = x + i y\\ (2-i)(x+iy) + (2+i)(x-i y) = 20\\ (2x+y) - i(x-2y)+(2x+y)+i(x-2y)=20\\ 2x+y=10\\ y=-2x+10\\ y=0 \Rightarrow x=5\\ \text{Intersection is at $z=5$}\)

Rom Sep 28, 2019

7 Online Users