+0  
 
0
106
1
avatar

Simplify $\dfrac{5+12i}{2-3i}$. Your answer should be of the form $a+bi$, where $a$ and $b$ are both real numbers and written as improper fractions (if necessary).

Guest Mar 27, 2018
 #1
avatar
0

Simplify the following:
(12 i + 5)/(-3 i + 2)

Multiply numerator and denominator of (12 i + 5)/(-3 i + 2) by 2 + 3 i:
((12 i + 5) (3 i + 2))/((-3 i + 2) (3 i + 2))

 

(2 - 3 i) (2 + 3 i) = 2×2 + 2×3 i - 3 i×2 - 3 i×3 i = 4 + 6 i - 6 i + 9 = 13:
((12 i + 5) (3 i + 2))/13

 

(5 + 12 i) (2 + 3 i) = 5×2 + 5×3 i + 12 i×2 + 12 i×3 i = 10 + 15 i + 24 i - 36 = -26 + 39 i:
(39 i - 26)/13

 

Factor 13 out of 39 i - 26 giving 13 (3 i - 2):
(13 (3 i - 2))/13

(13 (3 i - 2))/13 = 13/13×(3 i - 2) = 3 i - 2:

 =3i - 2    OR    -2 + 3i

Guest Mar 28, 2018
edited by Guest  Mar 28, 2018

22 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.