+0  
 
0
31
1
avatar

Simplify $\dfrac{5+12i}{2-3i}$. Your answer should be of the form $a+bi$, where $a$ and $b$ are both real numbers and written as improper fractions (if necessary).

Guest Mar 27, 2018
Sort: 

1+0 Answers

 #1
avatar
0

Simplify the following:
(12 i + 5)/(-3 i + 2)

Multiply numerator and denominator of (12 i + 5)/(-3 i + 2) by 2 + 3 i:
((12 i + 5) (3 i + 2))/((-3 i + 2) (3 i + 2))

 

(2 - 3 i) (2 + 3 i) = 2×2 + 2×3 i - 3 i×2 - 3 i×3 i = 4 + 6 i - 6 i + 9 = 13:
((12 i + 5) (3 i + 2))/13

 

(5 + 12 i) (2 + 3 i) = 5×2 + 5×3 i + 12 i×2 + 12 i×3 i = 10 + 15 i + 24 i - 36 = -26 + 39 i:
(39 i - 26)/13

 

Factor 13 out of 39 i - 26 giving 13 (3 i - 2):
(13 (3 i - 2))/13

(13 (3 i - 2))/13 = 13/13×(3 i - 2) = 3 i - 2:

 =3i - 2    OR    -2 + 3i

Guest Mar 28, 2018
edited by Guest  Mar 28, 2018

38 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details