+0  
 
0
230
1
avatar+211 

Suppose $a$ and $b$ are positive integers such that $\gcd(a,b)$ is divisible by exactly $7$ distinct primes and $\mathop{\text{lcm}}[a,b]$ is divisible by exactly $28$ distinct primes.  If $a$ has fewer distinct prime factors than $b$, then $a$ has at most how many distinct prime factors?

Rollingblade  Apr 14, 2018
 #1
avatar
+1

GCD{510,510 and 107!] =510,510=2 * 3 * 5 * 7 * 11 * 13 * 17{7 distinct primes].

 

LCM{510,510, 107!} =107!= 2^102 * 3^50 * 5^25 * 7^17 * 11^9 * 13^8 * 17^6 * 19^5 * 23^4 * 29^3 * 31^3 * 37^2 * 41^2 * 43^2 * 47^2 * 53^2 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97 * 101 * 103 * 107

{28 distinct primes}.

Guest Apr 14, 2018
edited by Guest  Apr 14, 2018

18 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.