+0  
 
0
31
1
avatar+65 

Suppose $a$ and $b$ are positive integers such that $\gcd(a,b)$ is divisible by exactly $7$ distinct primes and $\mathop{\text{lcm}}[a,b]$ is divisible by exactly $28$ distinct primes.  If $a$ has fewer distinct prime factors than $b$, then $a$ has at most how many distinct prime factors?

 
Rollingblade  Apr 14, 2018
Sort: 

1+0 Answers

 #1
avatar
+1

GCD{510,510 and 107!] =510,510=2 * 3 * 5 * 7 * 11 * 13 * 17{7 distinct primes].

 

LCM{510,510, 107!} =107!= 2^102 * 3^50 * 5^25 * 7^17 * 11^9 * 13^8 * 17^6 * 19^5 * 23^4 * 29^3 * 31^3 * 37^2 * 41^2 * 43^2 * 47^2 * 53^2 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97 * 101 * 103 * 107

{28 distinct primes}.

 
Guest Apr 14, 2018
edited by Guest  Apr 14, 2018

16 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details