+0  
 
0
70
2
avatar+606 

Find all numbers $r$ for which the system of congruences \begin{align*} x &\equiv r \pmod{6}, \\ x &\equiv 9 \pmod{20}, \\ x &\equiv 4 \pmod{45} \end{align*}has a solution.

supermanaccz  May 26, 2018

Best Answer 

 #2
avatar+92617 
+2

This is the question.

 

Find all numbers r for which the system of congruences

 

\(\begin{align*} x &\equiv r \pmod{6}, \\ x &\equiv 9 \pmod{20}, \\ x &\equiv 4 \pmod{45} \end{align*}\)

 

has a solution.

 

I get r=1

 

Lets see....  (All the pronumerals I will use are integers)

x/20 = k remainder 9 so    x=20k+9

x/45 = t remainder 4 so     x=45t+4

so

20k+9 = 45t+4

45t-20k = 9-4

45t - 20k = 5

9t - 4k = 1

one obvious solution is t=1 and k=2

9( 1 ) - 4 (2) =1

9(1+4n)-4(2+9n)=1      (because I have added 36n and then taken 36n away again)

so a general solution is   t=1+4n   and  k=2+9n

 

x=20(2+9n)+9 = 40+180n+9 = 49+180n

or

x=45(1+4n)+4 = 45+180n+4 = 49+180n      Good they are the same.

 

Now we have x is equivalent to r mod 6

So

(49+180n)/6 = Q remainder r

49+180n = 6Q+r

48+180n+1=6Q+r

6(8+30n)+1=6Q+r

 

r = 1

Melody  May 26, 2018
 #1
avatar
0

Sorry, can't read your question.

Guest May 26, 2018
 #2
avatar+92617 
+2
Best Answer

This is the question.

 

Find all numbers r for which the system of congruences

 

\(\begin{align*} x &\equiv r \pmod{6}, \\ x &\equiv 9 \pmod{20}, \\ x &\equiv 4 \pmod{45} \end{align*}\)

 

has a solution.

 

I get r=1

 

Lets see....  (All the pronumerals I will use are integers)

x/20 = k remainder 9 so    x=20k+9

x/45 = t remainder 4 so     x=45t+4

so

20k+9 = 45t+4

45t-20k = 9-4

45t - 20k = 5

9t - 4k = 1

one obvious solution is t=1 and k=2

9( 1 ) - 4 (2) =1

9(1+4n)-4(2+9n)=1      (because I have added 36n and then taken 36n away again)

so a general solution is   t=1+4n   and  k=2+9n

 

x=20(2+9n)+9 = 40+180n+9 = 49+180n

or

x=45(1+4n)+4 = 45+180n+4 = 49+180n      Good they are the same.

 

Now we have x is equivalent to r mod 6

So

(49+180n)/6 = Q remainder r

49+180n = 6Q+r

48+180n+1=6Q+r

6(8+30n)+1=6Q+r

 

r = 1

Melody  May 26, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.