+0  
 
0
59
2
avatar+154 

\( 4^3 \cdot 5^4 \cdot 6^2\)

How many distinct, natural-number factors does it have

Creeperhissboom  Apr 24, 2018
Sort: 

2+0 Answers

 #1
avatar
0

4^3. 5^4. 6^2 =1,440,000.

1,440,000 = 2^8×3^2×5^4 (14 prime factors, 3 distinct)

Guest Apr 24, 2018
 #2
avatar+995 
0

Solution:

A divisor of a number is an integer that divides the number with a remainder of zero. All integers greater than one (1) have at least two (2 )divisors. If a number has only two divisors then it is a prime number.

 

\(\small \text{To find the total number of divisors of a number, factor out the primes }\\ \small \text{and add one (1) to the exponent of each prime. }\\ (4^3) \cdot (5^4) \cdot (6^2) = (2^8) \cdot(3^2)\cdot(5^4)\\ (8+1)(2+1)(4+1) = \mathbf {135} \text { divisors for } (4^3) \cdot (5^4) \cdot (6^2)\\ \text{ }\\ \text{Additional notes: }\\ (2^8) \cdot(3^2)\cdot(5^4)\\ \small \text{All factors will be in this form } (2^x) \cdot(3^y)\cdot(5^z) \\ \small \text {where x,y,z are} \geq 0 \text{ and} \leq \{8,2,4\} \small \text{ the highest prime factor exponents of the number itself.} \\ \small \text {As such, the calculation of all individual divisors may be found by iterating (stepping through) each }\\ \small \text{prime’s exponent from zero to the maximum and multiplying by the other primes. }\\ \sum_\limits {x=0}^{8} \sum_\limits {y=0}^{2}\sum_\limits {z=0}^{4} ((2^x)(3^y)(5^z)) =5,188,183 \text{ (sum of divisors) }\\ \)

 

 

GA

GingerAle  Apr 24, 2018

22 Online Users

avatar
avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy