+0  
 
0
80
2
avatar

compute \(\binom40+\binom51+\binom62+\binom73.\)

Guest Mar 10, 2018
Sort: 

2+0 Answers

 #1
avatar+26677 
+1

In general: \((\frac{m}{n})=\frac{m!}{n!(m-n)!}\)

 

so:    

  \((\frac{4}{0})=1\\ (\frac{5}{1})=5\\ (\frac{6}{2})=15 \\ (\frac{7}{3})=35\)

 

I’ll leave you to add up the numbers!

 

(Note that 0! = 1)

Alan  Mar 10, 2018
edited by Alan  Mar 10, 2018
 #2
avatar+86528 
+1

Note that 

 

C(n, 0) + C(n+1,1) + C(n + 2, 2) + C(n + 3, 3) +.....+ C(n + m, m)  = C(n + m + 1, m)

 

So

 

C(4,0)  + C(5, 1) + C(6,2) + C(7,3)  = C(8,3)   = 56

 

 

cool cool cool

CPhill  Mar 11, 2018

17 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy