+0  
 
+1
228
3
avatar+3821 

For what value of \(c\) will the circle with equation \(x^2 - 10x + y^2 + 6y + c = 0\) have a radius of length 1?

 Feb 5, 2018

Best Answer 

 #1
avatar+16286 
+1

X^2 -10x   + 25   +  y^2 + 6y   +   9   = -c   + 25 + 9

(x-5)^2  +  (y+3)^2  = -c  + 34           

 

-c+34 = 1

-c=-33

c = 33

 Feb 5, 2018
edited by Guest  Feb 5, 2018
edited by Guest  Feb 5, 2018
 #1
avatar+16286 
+1
Best Answer

X^2 -10x   + 25   +  y^2 + 6y   +   9   = -c   + 25 + 9

(x-5)^2  +  (y+3)^2  = -c  + 34           

 

-c+34 = 1

-c=-33

c = 33

ElectricPavlov Feb 5, 2018
edited by Guest  Feb 5, 2018
edited by Guest  Feb 5, 2018
 #2
avatar+3821 
+1

Thanks, EP! Amazing!

 Feb 6, 2018
 #3
avatar+175 
+2

Completing the square gives us \((x - 5)^2 + (y + 3)^2 = 34 - c\) . Since we want the radius to be 1, we must have \(34 - c = 1^2\) . It follows that \(c = \boxed{33}\).

 Feb 6, 2018

20 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.