+0  
 
+1
37
1
avatar+657 

The least common multiple of two positive integers is 7!, and their greatest common divisor is 9. If one of the integers is 315, then what is the other?
 

MIRB16  Apr 30, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
+1

The least common multiple of two positive integers is 7!, 

and their greatest common divisor is 9. If one of the integers is 315,

then what is the other?
 

Formula:

\(\begin{array}{|rcll|} \hline GCD(M, N) \times LCM(M, N) &=& M \times N \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline GCD(M, N) \times LCM(M, N) &=& M \times N \\ 9\times 7! &=& 315\cdot N \\\\ N &=& \dfrac{9\times 7!}{315} \\\\ &=& \dfrac{ 7!}{35} \\\\ &=& \dfrac{ 2\times 3 \times 4 \times 5 \times 6 \times 7 }{5\times 7} \\\\ &=& 2\times 3 \times 4 \times 6 \\\\ &=& 144 \\ \hline \end{array} \)

 

The other is 144

 

laugh

heureka  Apr 30, 2018

8 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy