We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
86
1
avatar

plz give a detailed solution for the question 

Prove that for any n , n- n is divisible by 30 .

 Mar 9, 2019
 #1
avatar+7649 
+1

The base case n = 0 is obviously correct, as 05 - 0 = 0 is divisible by 30.

Next, we want to prove when n5 - n is divisible by 30, (n+1)5 - (n+1) is divisible by 30.

To do so, we need to prove that ((n+1)5 - (n+1)) - (n5 - n) is divisible by 30.

Making use of the fact that a5 - b5 = (a - b)(a4 + a3b + a2b2 + ab3 + b4), 

((n+1)5 - (n+1)) - (n5 - n) = ((n+1)4 + n(n+1)3 + n2(n+1)2 + n3(n+1) + n4) - 1 = 5n(n+1)(n2+n+1).

 

If we can prove that n(n+1)(n2+n+1) is divisible by 6, we are done.

 

First case: n = 3k for some integers k.

n(n+1)(n2+n+1) = 3k(3k+1)(9k+ 3k + 1).

As 3k is divisible by 3 and (3k+1) is divisible by 2, we proved that n5 - n is divisible by 30 when \(n\equiv 0 \pmod 3\)

 

Second case: n = 3k + 1 for some integers k.

n(n+1)(n2+n+1) = (3k+1)(3k+2)(9k+ 9k + 3) = 3(3k+1)(3k+2)(3k2 + 3k + 1).

As (3k+1) is divislbe by 2, we proved that n5 - n is divisible by 30 when \(n\equiv 1\pmod 3 \).

 

Last case: n = 3k - 1 for some integers k.

n(n+1)(n2+n+1) = (3k)(3k-1)(9k2 - 3k + 1)

When k is even, 3k is divisible by 6.

When k is odd, 3(3k-1) is divisible by 6.

Therefore, n5 - n is divisible by 30 when \(n\equiv 2\pmod 3 \)

 

Therefore, for all n, n5 - n is divisible by 30.

 Mar 9, 2019

19 Online Users