+0  
 
0
146
1
avatar+118 

Let $\frac mn$ be a fraction, where $m$ and $n$ are positive integers. Consider the operation defined by replacing $\frac mn$ by $\frac{m+1}{n+1}$ and then writing the result in lowest terms. For example, applying this operation to $\frac{5}{14}$ would give $\frac{2}{5}.$ How many times must this operation be repeatedly applied to $\frac{1}{2005}$ before we obtain $\frac{2004}{2005}?$

 

How many ordered pairs of positive integers (M,N)  satisfy GCD(M, N)=3  and LCM(M, N)=108

 Oct 13, 2019
 #1
avatar+439 
+6

 

I think it was answered here 

 

https://web2.0calc.com/questions/please-help_34668

 Oct 13, 2019

21 Online Users