+0  
 
+1
59
1
avatar

Let F(x) be the real-valued function defined for all real x except for x = 0 and x = 1 and satisfying the functional equation \(F(x) + F\left(\frac{x-1}x\right) = 1+x\).Find the F(x) satisfying these conditions. Write F(x) as a rational function with expanded polynomials in the numerator and denominator.

Guest May 22, 2018
 #1
avatar+19475 
+2

Let F(x) be the real-valued function defined for all real x except for x = 0 and x = 1 and satisfying

the functional equation

\(F(x) + F\left(\frac{x-1}x\right) = 1+x.\)

F(x) + F\left(\frac{x-1}x\right) = 1+x.

Find the F(x) satisfying these conditions.

Write F(x) as a rational function with expanded polynomials in the numerator and denominator.

 

\(\begin{array}{|lrclcl|} \hline & F(x) + F\left(\frac{x-1}x\right) &=& 1+x \qquad (1) \\\\ \text{Set in (1) }x=\frac{x-1}{x}: & F\left(\frac{x-1}x\right) + F\left(\frac1{1-x}\right) &=& 1+\frac{x-1}{x} \qquad (2) \\\\ \text{Set in (1) }x=\frac1{1-x}: & F\left(\frac1{1-x}\right) + F(x) &=& 1+\frac1{1-x} \qquad (3) \\\\ \hline \\ (1) - (2) + (3): & F(x) + F\left(\frac{x-1}x\right) \\ & - \Big(F\left(\frac{x-1}x\right) + F\left(\frac1{1-x}\right) \Big) \\ & + F\left(\frac1{1-x}\right) + F(x) &=& 1+x -(1+\frac{x-1}{x}) + 1+\frac1{1-x} \\\\ & F(x) + F\left(\frac{x-1}x\right) \\ & -F\left(\frac{x-1}x\right) - F\left(\frac1{1-x}\right) \\ & + F\left(\frac1{1-x}\right) + F(x) &=& 1+x -(1+\frac{x-1}{x}) + 1+\frac1{1-x} \\\\ & 2F(x) &=& 1+x -(1+\frac{x-1}{x}) + 1+\frac1{1-x} \\ & 2F(x) &=& 1+x -1-\frac{x-1}{x} + 1+\frac1{1-x} \\ & 2F(x) &=& 1+x -\frac{x-1}{x} +\frac1{1-x} \\ & 2F(x) &=& 1+x +\frac{1-x}{x} +\frac1{1-x} \\\\ & 2F(x) &=& \dfrac{(1+x)x(1-x)+(1-x)^2+x}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{(1-x^2)x+1-2x+x^2+x}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{(1-x^2)x+1-x+x^2}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{ x-x^3 +1-x+x^2}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{ 1+x^2-x^3}{x(1-x)} \\\\ & F(x) &=& \dfrac{ 1+x^2-x^3}{2x(1-x)} \\\\ & \mathbf{F(x)} & \mathbf{=} & \mathbf{\dfrac{ 1+x^2-x^3}{2x - 2x^2}} \\ \hline \end{array}\)

 

graph:

 

laugh

heureka  May 23, 2018
edited by heureka  May 23, 2018

20 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.