Let
f(x) = 3x^2 - 2 if x <= 3
f(x) = ax^2 + 7x - 4 if x > 3
Find a if the graph of y = f(x) is continuous (which means the graph can be drawn without lifting your pencil from the paper).
Let
f(x) = 3x^2 - 2 if x <= 3
f(x) = ax^2 + 7x - 4 if x > 3
Find a if the graph of y = f(x) is continuous.
Hello Guest!
\(f_1(x) = 3x^2 - 2\\ f_1(3) = 3\cdot 9 - 2=25\)
\(f_2(x) = ax^2 + 7x - 4=25\\ f_2(3) = a\cdot 9 + 7\cdot 3 - 4=25\\ 9a=25-21+4=8\)
\(a=\dfrac{8}{9}\)
a, if the graph of y = f(x) is continuous, is \(\dfrac{8}{9}.\)
The graph of y = f(x) is \(f_1(x) = 3x^2 - 2\ |\ if\ x\ \leq 3\\ f_2(x) = \dfrac{8}{9}x^2 + 7x - 4\ |\ if\ x > 3\)
!