Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
383
1
avatar

If f(x) = a+bx, what are the real values of a and b such that f(f(f(1))) = 14 and f(f(f(0))) = -13.

 Jun 13, 2021
 #1
avatar+287 
+1

We have $f(f(f(x))) = a + b(a+b(a+bx)) = a + ab + b^2(a+bx) = a + ab + ab^2 + b^3x$.  Then
f(f(f(1)))=a+ab+ab2+b3=14f(f(f(0)))=a+ab+ab2=13
So $b^3 = 14+13 = 27$, that is, $b=3$.  Substituting $b$ in the second equation gives $a+3a+9a = -13$, that is, $a = -1$.

 Jun 13, 2021

0 Online Users