We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
219
2
avatar

In triangle ABC, sin A : sin B : sin C = 5 : 5 : 6. Find cos C.

 May 27, 2019

Best Answer 

 #2
avatar+23575 
+4

In triangle ABC, sin A : sin B : sin C = 5 : 5 : 6. Find cos C.

 

\(\begin{array}{|lrcll|} \hline (1): & \mathbf{\dfrac{\sin(A)}{\sin(B)}} &=& \mathbf{\dfrac{5}{5}} \\\\ & \dfrac{\sin(A)}{\sin(B)} &=& 1 \\ \\ & \sin(A) &=& \sin(B) \\ & \mathbf{A} &=& \mathbf{B} \quad | \quad A=180^\circ-B \text{ is not possible}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sin(C) &=& \sin\Big(180^\circ-(A+B)\Big) \quad | \quad B=A \\ \sin(C) &=& \sin\Big(180^\circ-(A+A)\Big) \\ \sin(C) &=& \sin\Big(180^\circ-(2A)\Big) \\ \sin(C) &=& \sin( 2A ) \\ \mathbf{\sin(C)} &=& \mathbf{2\sin( A )\cos(A)} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline (2): & \mathbf{\dfrac{\sin(A)}{\sin(C)}} &=& \mathbf{\dfrac{5}{6}} \\\\ & \dfrac{\sin(A)}{2\sin( A )\cos(A)} &=& \dfrac{5}{6} \\\\ & \dfrac{1}{2 \cos(A)} &=& \dfrac{5}{6} \\\\ & 2 \cos(A) &=& \dfrac{6}{5} \\\\ & \mathbf{ \cos(A) } &=& \mathbf{ \dfrac{6}{10} } \\ \hline & \sin(A) &=& \sqrt{1-\cos^2(A) } \\ & \sin(A) &=& \sqrt{1-\dfrac{6^2}{10^2} } \\ & \sin(A) &=& \sqrt{\dfrac{10^2-6^2}{10^2} } \\ & \sin(A) &=& \sqrt{\dfrac{8^2}{10^2} } \\ & \mathbf{ \sin(A) } &=& \mathbf{ \dfrac{8}{10} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (2): & \mathbf{\dfrac{\sin(A)}{\sin(C)}} &=& \mathbf{\dfrac{5}{6}} \quad | \quad \mathbf{ \sin(A) = \dfrac{8}{10} } \\\\ & \dfrac{\dfrac{8}{10}}{\sin(C)} &=& \dfrac{5}{6} \\\\ & \sin(C) &=& \dfrac{8}{10}\cdot \dfrac{6}{5} \\\\ & \mathbf{ \sin(C) } &=& \mathbf{ \dfrac{24}{25} } \\ \hline & \cos(C) &=& \sqrt{1-\sin^2(C) } \\ & \cos(C) &=& \sqrt{1-\dfrac{24^2}{25^2} } \\ & \cos(C) &=& \sqrt{\dfrac{25^2-24^2}{25^2} } \\ & \cos(C) &=& \sqrt{\dfrac{7^2}{25^2} } \\ & \cos(C) &=& \dfrac{7 }{25 } \\ & \mathbf{\cos(C)} &=& \mathbf{0.28} \\ \hline \end{array}\)

 

laugh

 May 28, 2019
 #1
avatar
0

cos c ~ .279

 May 28, 2019
 #2
avatar+23575 
+4
Best Answer

In triangle ABC, sin A : sin B : sin C = 5 : 5 : 6. Find cos C.

 

\(\begin{array}{|lrcll|} \hline (1): & \mathbf{\dfrac{\sin(A)}{\sin(B)}} &=& \mathbf{\dfrac{5}{5}} \\\\ & \dfrac{\sin(A)}{\sin(B)} &=& 1 \\ \\ & \sin(A) &=& \sin(B) \\ & \mathbf{A} &=& \mathbf{B} \quad | \quad A=180^\circ-B \text{ is not possible}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sin(C) &=& \sin\Big(180^\circ-(A+B)\Big) \quad | \quad B=A \\ \sin(C) &=& \sin\Big(180^\circ-(A+A)\Big) \\ \sin(C) &=& \sin\Big(180^\circ-(2A)\Big) \\ \sin(C) &=& \sin( 2A ) \\ \mathbf{\sin(C)} &=& \mathbf{2\sin( A )\cos(A)} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline (2): & \mathbf{\dfrac{\sin(A)}{\sin(C)}} &=& \mathbf{\dfrac{5}{6}} \\\\ & \dfrac{\sin(A)}{2\sin( A )\cos(A)} &=& \dfrac{5}{6} \\\\ & \dfrac{1}{2 \cos(A)} &=& \dfrac{5}{6} \\\\ & 2 \cos(A) &=& \dfrac{6}{5} \\\\ & \mathbf{ \cos(A) } &=& \mathbf{ \dfrac{6}{10} } \\ \hline & \sin(A) &=& \sqrt{1-\cos^2(A) } \\ & \sin(A) &=& \sqrt{1-\dfrac{6^2}{10^2} } \\ & \sin(A) &=& \sqrt{\dfrac{10^2-6^2}{10^2} } \\ & \sin(A) &=& \sqrt{\dfrac{8^2}{10^2} } \\ & \mathbf{ \sin(A) } &=& \mathbf{ \dfrac{8}{10} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (2): & \mathbf{\dfrac{\sin(A)}{\sin(C)}} &=& \mathbf{\dfrac{5}{6}} \quad | \quad \mathbf{ \sin(A) = \dfrac{8}{10} } \\\\ & \dfrac{\dfrac{8}{10}}{\sin(C)} &=& \dfrac{5}{6} \\\\ & \sin(C) &=& \dfrac{8}{10}\cdot \dfrac{6}{5} \\\\ & \mathbf{ \sin(C) } &=& \mathbf{ \dfrac{24}{25} } \\ \hline & \cos(C) &=& \sqrt{1-\sin^2(C) } \\ & \cos(C) &=& \sqrt{1-\dfrac{24^2}{25^2} } \\ & \cos(C) &=& \sqrt{\dfrac{25^2-24^2}{25^2} } \\ & \cos(C) &=& \sqrt{\dfrac{7^2}{25^2} } \\ & \cos(C) &=& \dfrac{7 }{25 } \\ & \mathbf{\cos(C)} &=& \mathbf{0.28} \\ \hline \end{array}\)

 

laugh

heureka May 28, 2019

9 Online Users