+0  
 
0
41
2
avatar

 image below with two squares, ABCD and BFGE, sharing a vertex. Given that AE = 5, what is the length of DG?

 

 Jul 28, 2020
 #1
avatar+25532 
+3

Image below with two squares, ABCD and BFGE, sharing a vertex.
Given that AE = 5, what is the length of DG?

My attempt:

\(\begin{array}{|rcll|} \hline DG^2 &=& 5^2+5^2 \\ DG^2 &=&2*5^2 \\ \mathbf{DG} &=& \mathbf{5\sqrt{2}} \\ \hline \end{array}\)

 

laugh

 Jul 28, 2020
 #2
avatar+1135 
0

The image below with two squares, ABCD and BFGE, sharing a vertex. Given that AE = 5, what is the length of DG?

 

AB = 12         BE = 8          AX = 4

 

 Jul 28, 2020

20 Online Users

avatar