Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
328
3
avatar

The midpoint of PQ is M.  The midpoint of PR is N.  QN and RM intersect at O. If QN is perpendicular to PR, QN = 10, and PR = 16, then find OR.

 

 Apr 17, 2022
 #1
avatar+9675 
+2

Connect QR. Then O is the centroid of PQR.

 

PR = 16 implies NR = 8.

By property of centroid, QO : ON = 2 : 1. Then QN = 10 implies ON = 10/3.

Then,

OR=82+(103)2=263

 Apr 17, 2022
edited by MaxWong  Apr 17, 2022
 #2
avatar+130466 
+2

In triangle PMR  Draw atltitude MS   to  PR

 

Now  triangles  MPS and  QPN are similar

 

So    MP  /  QP   =  PS  / PN       

 

          1/2 =  PS /PN   ⇒   PS   = 4   ⇒  MS = (1/2) QN  =  5

 

And triangles   RSM  and  RNO   are similar

 

So    SR   = 12      MS  = 5     RN  =  8

 

MS / SR   =  ON  / RN

 

5 / 12  =  ON / 8

 

40 /12  =  ON   =   10/3

 

And since   triangle RNO  is right, then

 

OR   = sqrt   [ RN^2  + ON^2  ]   =   sqrt  [  8^2  + (10/3)^2 ]  =

 

sqrt [  64 +  100 / 9  ]  =  sqrt  [ (576 + 100) / 9  ]   =   sqrt  [ 676 ] / 3  =   26  / 3

 

 

cool cool cool

 Apr 17, 2022
 #3
avatar+2668 
+1

Because PN=8QN=10, and N=90PQ=164=241

 

We know that M is the midpoint, so PM=41.

 

Now, draw MA, so that MA is perpendicular to PR.

 

Because of similar triangles, MA=5 and AN=4

 

Using the Pythagorean Theorem, we find that RM=13.

 

Because of similar triangles, OR=23×13=263 

 Apr 17, 2022

0 Online Users