+0  
 
0
104
4
avatar+2487 

Help help

NotSoSmart  Feb 22, 2018

Best Answer 

 #1
avatar+7054 
+2

volume of candle   =   \(\frac13\pi r^2h\)          Since  h = r , we can replace  h  with  r .

volume of candle   =   \(\frac13\pi r^2r\)

volume of candle   =   \(\frac13\pi r^3\)

 

surface area of candle   =   \(\pi r^2+\pi r\sqrt{r^2+h^2}\)        Since  h = r , we can replace  h  with  r .

surface area of candle   =   \(\pi r^2+\pi r\sqrt{r^2+r^2}\)

surface area of candle   =   \(\pi r^2+\pi r\sqrt{2r^2}\)

surface area of candle   =   \(\pi r^2+\pi r\cdot r\sqrt{2}\)

surface area of candle   =   \(\pi r^2+\pi r^2\sqrt{2}\)

 

ratio of the volume of candle to its surface area  =   \(\frac{\text{volume of candle}}{\text{surface area of candle}}\)

 

\(\frac{\text{volume of candle}}{\text{surface area of candle}}\,=\,\frac{\frac13\pi r^3}{\pi r^2+\pi r^2\sqrt2}\\~\\ =\,\frac{\frac13r^3}{r^2+r^2\sqrt2} \\~\\ =\,\frac{\frac13r}{1+\sqrt2} \\~\\ =\,\frac{r}{3(1+\sqrt2)} \\~\\ =\,\frac{r(1-\sqrt2)}{3(1+\sqrt2)(1-\sqrt2)} \\~\\ =\,\frac{r(1-\sqrt2)}{3(1-2)} \\~\\ =\,\frac{r(1-\sqrt2)}{-3} \)

hectictar  Feb 22, 2018
Sort: 

4+0 Answers

 #1
avatar+7054 
+2
Best Answer

volume of candle   =   \(\frac13\pi r^2h\)          Since  h = r , we can replace  h  with  r .

volume of candle   =   \(\frac13\pi r^2r\)

volume of candle   =   \(\frac13\pi r^3\)

 

surface area of candle   =   \(\pi r^2+\pi r\sqrt{r^2+h^2}\)        Since  h = r , we can replace  h  with  r .

surface area of candle   =   \(\pi r^2+\pi r\sqrt{r^2+r^2}\)

surface area of candle   =   \(\pi r^2+\pi r\sqrt{2r^2}\)

surface area of candle   =   \(\pi r^2+\pi r\cdot r\sqrt{2}\)

surface area of candle   =   \(\pi r^2+\pi r^2\sqrt{2}\)

 

ratio of the volume of candle to its surface area  =   \(\frac{\text{volume of candle}}{\text{surface area of candle}}\)

 

\(\frac{\text{volume of candle}}{\text{surface area of candle}}\,=\,\frac{\frac13\pi r^3}{\pi r^2+\pi r^2\sqrt2}\\~\\ =\,\frac{\frac13r^3}{r^2+r^2\sqrt2} \\~\\ =\,\frac{\frac13r}{1+\sqrt2} \\~\\ =\,\frac{r}{3(1+\sqrt2)} \\~\\ =\,\frac{r(1-\sqrt2)}{3(1+\sqrt2)(1-\sqrt2)} \\~\\ =\,\frac{r(1-\sqrt2)}{3(1-2)} \\~\\ =\,\frac{r(1-\sqrt2)}{-3} \)

hectictar  Feb 22, 2018
 #2
avatar+86613 
+1

Nice, hectictar   !!!!

 

 

cool cool cool

CPhill  Feb 22, 2018
 #3
avatar+7054 
+2

Gracias laughlaugh

hectictar  Feb 22, 2018
 #4
avatar+86613 
+1

Didn't know that you were fluent in Spanish!!!!....LOL!!!!

 

 

 

cool cool cool

CPhill  Feb 22, 2018

31 Online Users

avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy