+0  
 
0
49
2
avatar+35 

The parabola $y = ax^2 + bx + c$ is graphed below. Find $a+b+c$. (The grid lines are one unit apart.)

 

https://latex.artofproblemsolving.com/c/e/2/ce264d13e5e7038f82ba3bae952d91fdf182b0ff.png

 

Hopefully, this works. It all it gave me and maybe try inverting colors if u cant see sry

 Feb 26, 2020
edited by PharaoCarl  Feb 26, 2020
 #1
avatar+109450 
+2

No graph appears, PC.....

 

 

cool cool cool

 Feb 26, 2020
 #2
avatar+109450 
+2

OK.....

 

The vertex  is   ( 2,1)

 

The y intercept  = (0,5)

 

So   we  have  this  form

 

y  =  a ( x - h)^2  +  k        where  (h, k) is the  vertex and  (x,y) is another point on the parabola

 

So we have that

 

5 =  a (0 - 2)^2  + 1

 

5  = a (2)^2  + 1

 

4 = 4a

 

1  = a

 

So   we  have  that

 

y =1 ( x - 2)^2  +  1

 

y= x^2 - 4x  + 4 + 1

 

y  = x^2  - 4x  + 5

 

Here's  the graph, PC  : https://www.desmos.com/calculator/gbse0uvdko

 

 

 

cool cool cool

 

 

 

a =(

 Feb 27, 2020

20 Online Users

avatar
avatar