Find the ordered pair \((s,t)\) that satisfies the system of equations
\(\begin{align*} \dfrac{s}{4} - 2t &= 2,\\ 3t - 6s &= 9. \end{align*}\)
from equation 2 \(t=2s+3 \\ \\ \text{plugging this into the 1st equation we get} \\ \\ \dfrac{s}{4} - 2(2s+3) = 2 \\ \\ \dfrac{s}{4} - 4s - 6 = 2 \\ -\dfrac{15}{4}s = 8 \\ \\ s = -\dfrac{32}{15} \\ \\ t = 2s + 3 = -\dfrac{64}{15} + \dfrac{45}{15} = -\dfrac{19}{15} \\ \\ (s,t) = \left(-\dfrac{32}{15},~-\dfrac{19}{15}\right)\)