What is the following value when expressed as a common fraction:
$$\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots + \frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}?$$
Sorry that the question looks weird!
What is the following value when expressed as a common fraction:
\(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots + \frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}\)?
\(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots + \frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}=\frac{2^9+2^8+2^7+...+2^2+2+1}{2^{10}} =\frac{512+256+128+...+4+2+1}{1024}=\frac{1023}{1024}\)