+0  
 
+1
613
2
avatar+16 

What is the following value when expressed as a common fraction:
$$\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots + \frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}?$$

Sorry that the question looks weird!

 Aug 16, 2020
 #2
avatar+33652 
+2

What is the following value when expressed as a common fraction:
\(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots + \frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}\)?

 

 

\(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots + \frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}=\frac{2^9+2^8+2^7+...+2^2+2+1}{2^{10}} =\frac{512+256+128+...+4+2+1}{1024}=\frac{1023}{1024}\)

 Aug 16, 2020

0 Online Users