We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
467
2
avatar+154 

Thank Ya

 Dec 7, 2017

Best Answer 

 #1
avatar+8720 
+2

C   =   2π * r          Divide both sides of the equation by  2π

C / ( 2π )   =   r

 

y   =   -\(\frac14\)x + 3         Multiply every term in this equation by  4 .

4y   =   -x + 12        Add  x  to both sides of the equation.

x + 4y   =   12

 

2x + 3y   =   9            Subtract  2x  from both sides of this equation.

3y   =   -2x + 9           Divide every term in this equation by  3 .

y   =   -\(\frac23\)x + 3

 

4x - 3y   =   -18         To find the y-intercept, plug in  0  for  x  and solve for  y .

4(0) - 3y   =   -18

-3y   =   -18

y   =   6                      So the y-intercept is  6 .

 

y   =   \(\frac12\)x + 6        To find the x-intercept, plug in  0  for y  and solve for  x .

0   =   \(\frac12\)x + 6

-6   =   \(\frac12\)x

-12   =   x              So the x-intercept is  -12 .

 Dec 7, 2017
 #1
avatar+8720 
+2
Best Answer

C   =   2π * r          Divide both sides of the equation by  2π

C / ( 2π )   =   r

 

y   =   -\(\frac14\)x + 3         Multiply every term in this equation by  4 .

4y   =   -x + 12        Add  x  to both sides of the equation.

x + 4y   =   12

 

2x + 3y   =   9            Subtract  2x  from both sides of this equation.

3y   =   -2x + 9           Divide every term in this equation by  3 .

y   =   -\(\frac23\)x + 3

 

4x - 3y   =   -18         To find the y-intercept, plug in  0  for  x  and solve for  y .

4(0) - 3y   =   -18

-3y   =   -18

y   =   6                      So the y-intercept is  6 .

 

y   =   \(\frac12\)x + 6        To find the x-intercept, plug in  0  for y  and solve for  x .

0   =   \(\frac12\)x + 6

-6   =   \(\frac12\)x

-12   =   x              So the x-intercept is  -12 .

hectictar Dec 7, 2017
 #2
avatar+154 
+1

Thanks somuch

 Dec 9, 2017

27 Online Users

avatar
avatar