+0  
 
+1
112
2
avatar+154 

Thank Ya

FunMath  Dec 7, 2017

Best Answer 

 #1
avatar+6299 
+2

C   =   2π * r          Divide both sides of the equation by  2π

C / ( 2π )   =   r

 

y   =   -\(\frac14\)x + 3         Multiply every term in this equation by  4 .

4y   =   -x + 12        Add  x  to both sides of the equation.

x + 4y   =   12

 

2x + 3y   =   9            Subtract  2x  from both sides of this equation.

3y   =   -2x + 9           Divide every term in this equation by  3 .

y   =   -\(\frac23\)x + 3

 

4x - 3y   =   -18         To find the y-intercept, plug in  0  for  x  and solve for  y .

4(0) - 3y   =   -18

-3y   =   -18

y   =   6                      So the y-intercept is  6 .

 

y   =   \(\frac12\)x + 6        To find the x-intercept, plug in  0  for y  and solve for  x .

0   =   \(\frac12\)x + 6

-6   =   \(\frac12\)x

-12   =   x              So the x-intercept is  -12 .

hectictar  Dec 7, 2017
Sort: 

2+0 Answers

 #1
avatar+6299 
+2
Best Answer

C   =   2π * r          Divide both sides of the equation by  2π

C / ( 2π )   =   r

 

y   =   -\(\frac14\)x + 3         Multiply every term in this equation by  4 .

4y   =   -x + 12        Add  x  to both sides of the equation.

x + 4y   =   12

 

2x + 3y   =   9            Subtract  2x  from both sides of this equation.

3y   =   -2x + 9           Divide every term in this equation by  3 .

y   =   -\(\frac23\)x + 3

 

4x - 3y   =   -18         To find the y-intercept, plug in  0  for  x  and solve for  y .

4(0) - 3y   =   -18

-3y   =   -18

y   =   6                      So the y-intercept is  6 .

 

y   =   \(\frac12\)x + 6        To find the x-intercept, plug in  0  for y  and solve for  x .

0   =   \(\frac12\)x + 6

-6   =   \(\frac12\)x

-12   =   x              So the x-intercept is  -12 .

hectictar  Dec 7, 2017
 #2
avatar+154 
+1

Thanks somuch

FunMath  Dec 9, 2017

27 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details