We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
56
2
avatar+625 

Ok, here's the drill, please give me a nudge, this is a HOMEWORK PROBLEM! Yayyyy! I need help! Boooooo!

 

What is the value of the sum \(\dfrac {1}{1\cdot 3} + \dfrac {1}{3\cdot 5} + \dfrac {1}{5\cdot 7} + \dfrac {1}{7\cdot 9} + \cdots + \dfrac {1}{199\cdot 201}\)? Express your answer as a fraction in simplest form.

 

Please Help! Again, I am sorry I am posting 2 times in a row... 

 

😫😩😢😭😰😥😓

 Jul 10, 2019
 #1
avatar+5225 
+1

\(\text{The formula seems to be }\\ \sum \limits_{k=1}^n \dfrac{1}{(2k-1)(2k+1)} = \dfrac{n}{2n+1}\)

 

Let's see if we can prove this by induction

 

\(P_1:\dfrac{1}{1\cdot 3} = \dfrac{1}{2(1)+1} = True\\ \text{Assume $P_n$ and prove $P_n \Rightarrow P_{n+1}$}\\~\\ \text{Let $S_n = \sum \limits_{k=1}^n \dfrac{1}{(2k-1)(2k+1)}$}\\ S_{n+1} = S_n + \dfrac{1}{(2n+1)(2n+3)} =\\ \dfrac{n}{2n+1}+\dfrac{1}{(2n+1)(2n+3)} = \\ \dfrac{1}{2n+1}\left(n + \dfrac{1}{2n+3}\right) = \\\)

 

\(\dfrac{1}{2n+1}\cdot \dfrac{2n^2+3n+1}{2n+3} = \\ \dfrac{n+1}{2n+3} = \dfrac{n+1}{2(n+1)+1}\\ \text{and thus $P_n \Rightarrow P_{n+1}$}\)

.
 
 Jul 10, 2019
 #2
avatar+22523 
+3

What is the value of the sum\( \dfrac {1}{1\cdot 3} + \dfrac {1}{3\cdot 5} + \dfrac {1}{5\cdot 7} + \dfrac {1}{7\cdot 9} + \cdots + \dfrac {1}{199\cdot 201}\)?

Express your answer as a fraction in simplest form.

 

\(\begin{array}{rcll} && \dfrac{1}{1*3} + \dfrac{1}{3*5} + \dfrac{1}{5*7}+ \dfrac{1}{7*9}+\ldots+\dfrac{1}{199*201} \\ &=& \dfrac{1}{1*3} + \dfrac{1}{3*5} + \dfrac{1}{5*7}+ \dfrac{1}{7*9}+\ldots+\dfrac{1}{(2n-1)(2n+1)} \\ \hline && \dfrac{1}{(2n-1)(2n+1)} = \dfrac12\left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right) \\ && \dfrac{1}{1*3} = \dfrac12\left( \dfrac{1}{1} - \dfrac{1}{3} \right) \\ && \dfrac{1}{3*5} = \dfrac12\left( \dfrac{1}{3} - \dfrac{1}{5} \right) \\ && \dfrac{1}{5*7} = \dfrac12\left( \dfrac{1}{5} - \dfrac{1}{7} \right) \\ && \dfrac{1}{7*9} = \dfrac12\left( \dfrac{1}{7} - \dfrac{1}{9} \right) \\ && \ldots \\ && \dfrac{1}{199*201} = \dfrac12\left( \dfrac{1}{199} - \dfrac{1}{201} \right) \\ \hline &=& \dfrac12\left( \dfrac{1}{1} - \dfrac{1}{3} \right) + \dfrac12\left( \dfrac{1}{3} - \dfrac{1}{5} \right) + \dfrac12\left( \dfrac{1}{5} - \dfrac{1}{7} \right) + \dfrac12\left( \dfrac{1}{7} - \dfrac{1}{9} \right)+\ldots+\dfrac12\left( \dfrac{1}{199} - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( \dfrac{1}{1} - \underbrace{\dfrac{1}{3} + \dfrac{1}{3}}_{=0} - \underbrace{\dfrac{1}{5}+\dfrac{1}{5}}_{=0} - \underbrace{\dfrac{1}{7} + \dfrac{1}{7}}_{=0} - \underbrace{\dfrac{1}{9}+ \dfrac{1}{9}}_{=0} +\ldots- \underbrace{\dfrac{1}{199}+\dfrac{1}{199}}_{=0} - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( \dfrac{1}{1} - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( 1 - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( \dfrac{201-1}{201} \right) \\ &=& \dfrac12\left( \dfrac{200}{201} \right) \\ &=& \dfrac{100}{201} \\ \end{array}\)

 

laugh

 
 Jul 10, 2019

4 Online Users