Processing math: 100%
 
+0  
 
0
35
1
avatar+305 

In parallelogram EFGH, let M be the point on EF such that FM : ME = 3 : 7, and let N be the point on EH such that HN : NE = 2 : 5. Line segments FH and GM intersect at P, and line segments FH and GN intersect at Q. Find PQ / FH.

 Apr 30, 2024
 #1
avatar+9675 
+1

Draw the diagram. You will notice that MPFGPH and HNQFGQ

Using the ratio of corresponding sides in these pairs of similar triangles, we have

 

HQQF=22+5=27

and

HPPF=3+77=107

 

We suppose HQ:QP:PF=1:a:b (if not, we just divide through the ratio until the first component is 1). 

Then,

{1a+b=271+ab=107

Cross-multiplying,

{2a+2b=77a+10b=7

 

Solving gives a=2817 and b=6334. Hence, HQ:QP:PF=34:56:63.

In particular, PQFH=5634+56+63=56153.

 Apr 30, 2024

0 Online Users