+0  
 
+1
57
2
avatar+1317 

Help Me, please.

 

Solve for g

 

h=\(\sqrt{\frac{g^2}{d}-5t}-1\)

ManuelBautista2019  Mar 4, 2018

Best Answer 

 #1
avatar+7048 
+2

\(h=\sqrt{\frac{g^2}{d}-5t}-1\)

                                          Add  1  to both sides of the equation.

\(h+1=\sqrt{\frac{g^2}{d}-5t}\)

                                          Square both sides of the equation.

\((h+1)^2=\frac{g^2}{d}-5t\)

                                          Add  5t  to both sides.

\((h+1)^2+5t=\frac{g^2}{d}\)

                                                Multiply both sides by  d .

\(d[(h+1)^2+5t]=g^2\)

                                                Take the ± square root of both sides.

\(±\sqrt{d[(h+1)^2+5t]}=g \\~\\ g=±\sqrt{d[(h+1)^2+5t]}\)

hectictar  Mar 4, 2018
Sort: 

2+0 Answers

 #1
avatar+7048 
+2
Best Answer

\(h=\sqrt{\frac{g^2}{d}-5t}-1\)

                                          Add  1  to both sides of the equation.

\(h+1=\sqrt{\frac{g^2}{d}-5t}\)

                                          Square both sides of the equation.

\((h+1)^2=\frac{g^2}{d}-5t\)

                                          Add  5t  to both sides.

\((h+1)^2+5t=\frac{g^2}{d}\)

                                                Multiply both sides by  d .

\(d[(h+1)^2+5t]=g^2\)

                                                Take the ± square root of both sides.

\(±\sqrt{d[(h+1)^2+5t]}=g \\~\\ g=±\sqrt{d[(h+1)^2+5t]}\)

hectictar  Mar 4, 2018
 #2
avatar+1317 
+2

Thank you!!

ManuelBautista2019  Mar 4, 2018

26 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy