\(h=\sqrt{\frac{g^2}{d}-5t}-1\)
Add 1 to both sides of the equation.
\(h+1=\sqrt{\frac{g^2}{d}-5t}\)
Square both sides of the equation.
\((h+1)^2=\frac{g^2}{d}-5t\)
Add 5t to both sides.
\((h+1)^2+5t=\frac{g^2}{d}\)
Multiply both sides by d .
\(d[(h+1)^2+5t]=g^2\)
Take the ± square root of both sides.
\(±\sqrt{d[(h+1)^2+5t]}=g \\~\\ g=±\sqrt{d[(h+1)^2+5t]}\)
\(h=\sqrt{\frac{g^2}{d}-5t}-1\)
Add 1 to both sides of the equation.
\(h+1=\sqrt{\frac{g^2}{d}-5t}\)
Square both sides of the equation.
\((h+1)^2=\frac{g^2}{d}-5t\)
Add 5t to both sides.
\((h+1)^2+5t=\frac{g^2}{d}\)
Multiply both sides by d .
\(d[(h+1)^2+5t]=g^2\)
Take the ± square root of both sides.
\(±\sqrt{d[(h+1)^2+5t]}=g \\~\\ g=±\sqrt{d[(h+1)^2+5t]}\)