We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
196
2
avatar+1405 

Help Me, please.

 

Solve for g

 

h=\(\sqrt{\frac{g^2}{d}-5t}-1\)

 Mar 4, 2018

Best Answer 

 #1
avatar+7354 
+2

\(h=\sqrt{\frac{g^2}{d}-5t}-1\)

                                          Add  1  to both sides of the equation.

\(h+1=\sqrt{\frac{g^2}{d}-5t}\)

                                          Square both sides of the equation.

\((h+1)^2=\frac{g^2}{d}-5t\)

                                          Add  5t  to both sides.

\((h+1)^2+5t=\frac{g^2}{d}\)

                                                Multiply both sides by  d .

\(d[(h+1)^2+5t]=g^2\)

                                                Take the ± square root of both sides.

\(±\sqrt{d[(h+1)^2+5t]}=g \\~\\ g=±\sqrt{d[(h+1)^2+5t]}\)

.
 Mar 4, 2018
 #1
avatar+7354 
+2
Best Answer

\(h=\sqrt{\frac{g^2}{d}-5t}-1\)

                                          Add  1  to both sides of the equation.

\(h+1=\sqrt{\frac{g^2}{d}-5t}\)

                                          Square both sides of the equation.

\((h+1)^2=\frac{g^2}{d}-5t\)

                                          Add  5t  to both sides.

\((h+1)^2+5t=\frac{g^2}{d}\)

                                                Multiply both sides by  d .

\(d[(h+1)^2+5t]=g^2\)

                                                Take the ± square root of both sides.

\(±\sqrt{d[(h+1)^2+5t]}=g \\~\\ g=±\sqrt{d[(h+1)^2+5t]}\)

hectictar Mar 4, 2018
 #2
avatar+1405 
+2

Thank you!!

 Mar 4, 2018

34 Online Users

avatar
avatar
avatar
avatar